Archaeological Documentary Study

Reconstruction of Michaelis-Bayswater Park

702 Bay 32nd Street
Queens County, New York

Prepared for:
New York City Department of Parks and Recreation

Prepared by:
Jean E. Howson
NV5, Inc.

July 2020
MANAGEMENT SUMMARY

Project: MICHAELIS-BAYSWATER PARK RECONSTRUCTION

LPC Project Review Number: 77DPR026Q (NYC PARKS DEPARTMENT)

Phase of Survey: Archaeological Documentary Study

Location: 701 BAY 32 STREET BBL: 4157450001

County: Queens

Survey Area - Number of Acres Surveyed: 30

USGS 7.5 Minute Quadrangle Map: Far Rockaway

Results of Archaeological Survey

- Number & name of precontact sites identified: 0
- Number & name of historic sites identified: 0
- Number & name of sites recommended for Phase IB/Avoidance: 0

Report Authors(s): Jean E. Howson, NV5, Inc.

Date of Report: July 2020
ABSTRACT

An Archaeological Documentary Study was undertaken for the New York City Department of Parks and Recreation for the Michaelis-Bayswater Park Reconstruction Project in Far Rockaway, Queens County, New York. The study included an analysis of the environmental setting, a review of the historic background of the property, and an assessment of prior disturbances.

The project area comprises approximately 30 acres, much of which was within Jamaica Bay or marshlands bordering the bay in historic times and was filled beginning in the early 20th century. Particular attention was paid to the easternmost section of the park, which was an area mapped historically as fast land, but which also has seen the most prior disturbance from park development.

The closest previously-recorded precontact archaeological site in the vicinity is known only from 19th-century reports of a large shell midden located immediately east of the park and a local collector’s report of finds in the area, including mention of a possible burial. Previous archaeological surveys nearby and adjacent to the park failed to identify archaeological sites. The project area was within an estate developed by John C. Norton in approximately 1830. The dwelling on the estate was located outside of the project area, but the property extended to the north and west into the present park. Early to mid-20th-century development within the park (all since demolished) included several houses along perimeter streets, a boat building yard, outbuildings associated with the Ashton Hotel (the former Norton estate), and post-WW II pre-fabricated military Quonset huts, used for veterans housing.

Proposed actions include demolition of existing park facilities, grading, infrastructure upgrades, and construction of new facilities with new subsurface disturbances typically up to two feet. Most mature trees will be preserved. Within the APE, precontact period archaeological potential is considered to be minimal due to prior disturbances from cutting and filling and especially from construction of the existing park facilities in 1968. It is unlikely that 19th-century shaft features would be extant within the park, due to distance from the Norton house. Landscaping features associated with the early development and later 19th century changes to the property are not likely to have survived development of the park in the 20th century.

Because previous disturbances have severely reduced the archaeological potential within the APE, no Phase IB archaeological testing was recommended.
Table of Contents

1. Introduction and Project Information ... 1
2. Environmental Information .. 2
3. Previous Surveys and Identified Archaeological Sites ... 5
4. Historic Background ... 8
5. Field Reconnaissance ... 13
6. Assessment of Archaeological Potential ... 14
7. Recommendations ... 16

Figures

1. Project location shown on U.S.G.S.
2. Project location shown on street map
3. Aerial view of project area
4. 1835 Renard Map
5. 1845 Hassler Map
6. 1852 Conner Map
7. 1873 Beers Map
8. 1891 Wolverton Map
9. 1899 Coast Survey Map
10. 1907 Ullitz Map
11. 1922 Sanborn Map
12. 1924 Aerial Photograph
13. 1954 Aerial Photograph
14. 1966 Aerial Photograph
15. Soils Map
16. Park plan showing locations of geotechnical borings
17. Overlay of 1899 coastline and marshes on aerial photograph
18. Ashton Hotel
19. Map of Marsh Restoration Project
20. Detail showing 1968 and proposed playground area topography

Photographs

1. View to northwest from north end of Beach 37th Street.
2. View to northwest from north end of Beach 36th Street.
3. View to east-northeast at north end of Beach 36th Street.
4. View to north across basin showing fill profile in Michaelis-Bayswater Park.
5. View to west-northwest up the basin.
7. View to south, section of park between Beach Channel Drive and Beach 35th Street.
8. View to northeast in Michaelis-Bayswater Park.
9. View to northwest toward tennis courts.
10. View to northeast with comfort station at left in the background.
Photographs, continued.

11. View to northwest, with concrete wall at right and comfort station in background.
12. View to north of paved playground.
13. View to west from corner of park at Beach Channel Drive and Bay 32nd Street.
14. View to southwest showing concrete walls and picnic area.
15. View to southeast from sidewalk along Bay 32nd Street showing undulating landscape.
16. View to south along Bay 32nd Street at Ocean Crest Boulevard.
17. View to southwest through park toward comfort station from Bay 32nd Street.
18. View to northwest from north of handball courts, with Bay 32nd Street at right.
19. View to west from north of handball courts, toward ballfields.
20. View to southwest at entrance opposite Falcon Avenue showing recent park improvements.
21. View to west across park from opposite Dwight Avenue.
22. View to south along shoreline on the west side of the park.
23. View to north along shoreline on the west side of the park.
24. View to east of shoreline on the north side of Norton Basin.
25. View to south behind tennis courts.
26. View to south from east ball field.
27. View to southwest across west ballfield

Appendices

A. Project Plans
B. 1968 Park Plans
C. Soil Boring Data
1. Introduction and Project Information

The New York City Department of Parks and Recreation (DPR), is proposing the reconstruction of Michaelis-Bayswater Park, located on the southeastern coast of Jamaica Bay in Queens, in the Bayswater neighborhood. The project area includes the entire park. The street address is 701 Bay 32nd Street, and tax parcels are Block 15745, Lot 1; Block 15952, Lots 25 and 27; Block 15953, Lots 25, 27, 31, 40, and 43; and Block 15954, Lots 25, 27, 28, 30, 31, 131, 33, 51, and 52. The project area is bounded by Beach Channel Drive, Beach 35th Street, Bay 32nd Street, Dwight Avenue, Norton Avenue, and Norton Basin, comprising approximately 30 acres of land (Figures 1, 2, and 3).

Michaelis-Bayswater Park was built by the city in 1968 and has undergone subsequent additions to the facilities and renovations. The purpose of the present project is to implement resilient design features aimed to mitigate future storm surges and frequent flooding caused by sea level rise and high tides. Actions will include redesign and reconfiguration of many of the existing park amenities. Grading and elevations will be a critical component of the reconstruction. All surfaces of the park and associated wetlands will be graded and clean imported fill will be placed at target elevations. Park surfaces will be laid out and constructed, park features will be added, and planting will occur according to specifications.

See Appendix A for project plans, including topographic survey; removals; layout; and grading. Appendix B contains the park plans from 1968 showing many of the existing features in the most built-up portion of the park.

The primary targets of this project are enhancing the site’s ability to resist high frequency flooding, while seamlessly integrating these enhancements with recreational features/spaces.

- Integrating landscape based feature(s) that protect the neighborhood and park from frequent flooding (caused by sea level rise, high tides, and storm surge)
- Improving circulation within the park - as well as between the park and its neighborhood
- Improving how the park sheds stormwater -- through a combination of grading, raingardens, and positive drainage system
- Enhancing the naturalized shoreline by removing invasive species and through stabilizing eroded banks
- Providing accessible paths to the water’s edge (a loop path and two boardwalks are proposed)
- Designing the park to function as a ‘community’ park by providing recreational amenities that appeal to a wide audience and by enabling the site to function as a platform for community events

The secondary targets of this project are enhancing/improving recreational assets. Proposed site-related improvements include the following:

- Reconstructing the natural turf athletic fields and providing a ‘loop’ path along its perimeter
- Reconstructing an expanded capacity standard comfort station and providing a new Maintenance and Operations facility with fenced ‘yard’
- Constructing a kayak launch
- Reconstructing the playground and spray shower
- Reconstructing picnic and seating areas
• Providing safe entry points with welcoming entrances – and improving overall circulation within the park and connections to neighboring street grid – including improving the pedestrian connection between the park’s recreational core and the A-train station.
• Providing more seating for passive recreational use
• Reconstructing the tennis courts away from the shoreline edge
• Reconstructing the handball and expanding/reconstructing basketball courts
• Constructing a staging area for the wender wagon
• Constructing an adult fitness area
• Improving site security by providing clear site-lines into the park from the street/sidewalk
• Improving site drainage
• Restoring important ecological assets -- including maritime beach/dune plantings and wetland plant communities
• Improving all infrastructural elements of the park (upgrading park facilities, and electrical/water service)

As part of their CEQR review process for the project (Project Number 77DPR026Q), the New York City Landmarks Preservation Commission (LPC) has called for preparation of an Archaeological Documentary Study in order to assess the potential for archaeological resources within the project area. Specifically, LPC cited archaeological sensitivity models and historic maps indicating potential for the recovery of remains from Native American occupation and burials on the project site. This report has been prepared in accordance with the 2018 Guidelines for Archaeological Work in New York City. This report was prepared by Jean E. Howson, Principal Archaeologist, NV5, with the assistance of Leonard G. Bianchi, Principal Archaeologist, and Richard L. Porter, Historian. Jason R. Nargiz prepared the historic maps and overlays.

2. Environmental Information

The project site is located within the Atlantic Coastal Plain physiographic province, consisting of the terminal moraines and outwash deposits beyond the terminus of a large ice sheet that covered a majority of the northern United States approximately 18,000 years ago. The Coastal Plain slopes to the southeast, with the submerged portion, the continental shelf, extending 100 miles offshore. The project area is within the outwash plain subarea and consists of a low sandy plain that extends southward from the Harbor Hill moraine, with deposits of sands and gravels gradually sloping to the sea. The surficial geology of glacial outwash sand and gravel is underlain by the unconsolidated sediments of the Monmouth Group, Matawan Group, and Magothy Formation (for overviews of geology and paleoenvironment, see Boesch 1997; Hayward et al. 2003; Historical Perspectives 2008; MFS 2020).

Conditions were probably tundra-like in western Long island in the period following the glacial retreat after approximately 18,000 years ago. The area was inland, as sea level was as much as 300 feet below that of today. By circa 11,500 years ago, megafauna and caribou would have been hunted by early human arrivals to the area. As the climate came to resemble that of the present and a sea level rose, upland forests and freshwater marshes, along with the developing bay with its salt marshes, provided rich habitats for flora and fauna. Shellfish, including oysters, soft and hard shell clams, scallops, and marine snails, were one of the most important subsistence resources (Boesch 1997; Hayward et al. 2003). The Norton Basin area of Jamaica Bay used to extend through Far Rockaway and connect to what
is now identified as Reynolds Channel through marshland that once encompassed the majority of the project site (MFS 2020). Norton Basin once had extensive subtidal estuarine shallows and intertidal salt marsh habitat. The character of the area was radically altered by extensive dredging associated with the development of the Edgemere Landfill, which now extends into the bay just to the west of the park, beginning in 1938.

The recent evolution of the landform on which Michaelis-Bayswater Park is situated is shown on maps and aerial photographs from the early 19th century through the present time (Figures 4 through 14). The park sits largely on made land. Historically, the project area included a small area of fast land, along its eastern edge, with the remainder lying under the bay or within the marsh.

Soil units currently mapped within the project area (Figure 15) are as follows:

- FoA - Fortress sand, 0 to 3 percent slopes. This unit is mapped along the shoreline portions of the park. The parent material consists of sandy dredge spoils.

- MVA - Marinepark-Verrazano complex, 0 to 3 percent slopes. Described as loamy human-transported material over sandy beach sand and/or outwash and/or dredge spoils. This soil unit is mapped as a rectangle within the park interior used for ballfields.

- UBAI - Urban land-Bigapple, non-dredge material complex, 0 to 3 percent slopes, low impervious surface. This soil unit is mapped in the eastern, most developed section of the park and likely corresponds to the historic fast land.

- UVAI - Urban land-Verrazano complex, 0 to 3 percent slopes, low impervious surface. This soil is mapped along the south edge of the project area along Norton Avenue.

A wetlands delineation was conducted for the park project in December 2018 (Normandeau 2019). Existing upland vegetation cover was identified as mixed forest and shrub, brackish meadow, and old field communities. Wetland cover included low marsh, high marsh, and salt shrub communities as well as areas dominated by the invasive common reed. Mudflats and unvegetated sandy beaches were exposed along the shoreline at low tide. Low marsh was present in the intertidal zone along most of the shoreline in the study area and was vegetated by a monoculture of saltwater cordgrass.

Soil borings and permeability tests were conducted in the park in 2019 as part of a geotechnical engineering study for the proposed improvements (MFS 2020). Four structural borings for the proposed comfort station and maintenance buildings (B-1, B-5, B-9, and B-11); thirteen borings in the vicinity of the proposed playground, sports courts, and other miscellaneous park improvements (B-2 through B-4, B-6 through B-8, B-10, and B-12 through B-17). These borings ranged in depth from 20 to 44 feet. Six green infrastructure borings (GI-1 through GI-6) were also drilled, to depths of 9 feet. Locations of Borings B-1 through B-17 are shown on Figure 16; see Appendix C of this report for detailed maps and the geotechnical boring logs.

The soil layers identified in the borings consisted, from top to bottom, of topsoil or paving; fill; silt (in Boring B-4); peat; clay; and sand. These strata are summarized from the MFS geotechnical report as follows:
Topsoil ranging from 4 inches to 12 inches was encountered in most of the borings. Exceptions were borings B-3 and B-14, where topsoil was absent and fill was found at the surface; and B-13C and B-17, where the surface was paved.

The fill layer across the site was typically fine to coarse sands with varying amounts of gravel, silt, and clay. Trace organics and various debris including asphalt, glass, ceramic, concrete, shells, and rubber fragments were also observed in the fill material. The fill ranged in thickness from approximately 2 feet to 13 feet. In borings B-13A and B-13B, in a playground area, large concrete obstructions were encountered at a depth of 3 feet below existing grade in the fill. (The concrete was likely debris contained in the fill but originally may have been from a structure that once stood in this part of the site.)

In Boring B-4, in a baseball field in the north-central area of the park, a 2.2-foot thick layer of grey silt with fine to medium sand, little clay, and trace organics was identified directly below the fill stratum.

Very soft to stiff peat with varying amounts of fine sands were encountered beneath the fill in borings B-3, B-14, GI-3, and GI-6. The peat layer was interlayered with sand and clay layers, ranging in thickness from 0.7 feet to 2.5 feet, in Borings B-4, B-6, B-12, and B-15.

Very soft to stiff clay with varying amounts of organics, sand, gravel, and shell fragments were encountered directly below the fill strata in borings B-1, B-2, B-16, GI-4, and GI-5. In borings B-4, B-12, and B-15, the clay/organic clay layers were encountered directly below the peat or silt layers, ranging in thickness from 2.5 feet in boring B-4 to 17 feet in boring B-15. In borings B-5, B-7, B-8, and B-14, the clay/organic clay layers were directly below the uppermost sand strata, ranging in thickness from 0.3 feet to 6.5 feet, and in boring B-1, a second clay layer was encountered below the sand and extended to the termination depth of the boring.

Very loose to very dense fine to coarse sand with varying amounts of gravel, silt, clay, and trace organics was encountered in all borings except GI-1 and GI-3 through GI-6, which were too shallow. Sand appeared directly below the fill in borings B-5 through B-13, B-15, and GI-2, and was below the clay/organic clay and peat layers in borings B-2 through B-4, B-14, and B-16. In Boring B-1, an 18.5-foot thick sand layer was encountered between upper and lower clay layers. Finally, in Boring B-15; a 1-foot thick sand layer lay below the fill strata and a second sand layer was below the clay/organic clay.

The borings and soil data back up the historic map data, showing fill overlying historic marsh and shoreline. Although the pre-fill shoreline was mapped variably, likely depending on whether marsh was differentiated, the section of the park that stands on historic fast land is essentially the easternmost triangle near the intersection of Beach Channel Drive and Bay 32nd Street. Figure 17 shows the shoreline and marsh areas as depicted on the 1899 Coast Survey map, overlain on a current aerial photograph.

Boring B-3, the furthest west of the borings, encountered the peat layer below 11 feet of fill, followed by sand and clay and then another peat layer at 21 feet below the surface. This suggests successive marsh formations.

The easternmost portion of the project area, roughly within the area mapped as fast land and along the near shore, was investigated with the borings shown in Table 1. The area with the shallowest fill is the...
most heavily landscaped portion of the park. It is also an area that may have been cut down when the western area was being filled, in the decades prior to the 1968 park construction.

Table 1. Depth of Fill in Eastern Part of the Project Area

<table>
<thead>
<tr>
<th>Boring</th>
<th>Depth of fill (feet)</th>
<th>Underlain by</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-4</td>
<td>11.33</td>
<td>silt, then clay</td>
</tr>
<tr>
<td>B-6</td>
<td>6.00</td>
<td>sand</td>
</tr>
<tr>
<td>B-7</td>
<td>4.00</td>
<td>sand</td>
</tr>
<tr>
<td>B-13 A, B and C</td>
<td>4.00</td>
<td>sand</td>
</tr>
<tr>
<td>B-10</td>
<td>2.00</td>
<td>sand</td>
</tr>
<tr>
<td>B-11</td>
<td>2.00</td>
<td>sand</td>
</tr>
<tr>
<td>B-9</td>
<td>2.00</td>
<td>sand</td>
</tr>
<tr>
<td>B-17</td>
<td>6.00</td>
<td>sand</td>
</tr>
<tr>
<td>B-12</td>
<td>6.00</td>
<td>sand, then peat, clay, sand</td>
</tr>
<tr>
<td>GI-3</td>
<td>8.42</td>
<td>peat</td>
</tr>
<tr>
<td>B-14</td>
<td>4.00</td>
<td>peat, then sand</td>
</tr>
<tr>
<td>GI-6</td>
<td>8.67</td>
<td>peat</td>
</tr>
<tr>
<td>B-15</td>
<td>8.00</td>
<td>lens of sand, then lens of peat, then clay</td>
</tr>
</tbody>
</table>

3. **Previous Surveys and Identified Archaeological Sites**

There are no known archaeological sites within the project area. However, the sensitivity survey for Queens conducted by Boesch for the Landmarks Preservation Commission (Boesch 1997) mapped the entire south and eastern shoreline of Jamaica Bay as archaeologically sensitive for precontact sites. In particular, Boesch’s site #52 is mapped along the shoreline immediately to the north of Michaelis-Bayswater Park. This site (which Boesch identifies as New York State Museum [NYSM] #4050), is described as a “large shell midden at Bayswater in Far Rockaway on the former property of Judge Healy” with Woodland points and pottery reportedly recovered and a possible burial. The Healy estate is shown on the 1891 Wolverton Atlas (Figure 8)—it actually was located immediately to the east, rather than north, of Michaelis-Bayswater Park. It also should be noted that NYSM site #4050 actually corresponds to Boesch’s mapped site #50, which is approximately 1.5 miles to the northeast of the park. NYSM #4050 represents a site recorded vaguely by Arthur C. Parker, who in his 1920 survey of New York archaeology marked the general location as a campsite on his map of Nassau County (Parker 1922: Plate 191 and p. 625).

Boesch cites two sources of information for site #52. Bellot, in his 1917 History of the Rockaways, mentions the Healy property as “the former site of the largest of the shell banks” and goes on to state
that the shell bank “was enormous and must have contained many thousand tons of clam shells. It was located at Bayswater on Judge Healy’s property, but was carted away and used for filling in purposes and road making” (Bellot 1917:88, 90). The second source of information is a 1988 interview conducted with a local collector during a Phase IA survey by Historical Perspectives for another project on the Rockaway peninsula: “According to Steve Feldman, an active Indian relic collector, the extreme eastern shore of Jamaica Bay (Bayswater) is still yielding Woodland Period ceramics, projectile points, and a possible burial” (Historical Perspectives 1988:12). Cece Saunders of Historical Perspectives was contacted regarding this 1988 interview, and upon reviewing her notes was able to confirm that this is the only information provided by Mr. Feldman (Saunders, personal communication, 2020).

William Pettit, in his 1901 history of the Rockaways, mentioned a site with artifacts and “seven giant Indian skeletons” in Bayswater (cited in Hayward et al. 2003:4-19). Based on Pettit’s description, Hayward et al. place this site east of Westbourne Avenue, approximately 800’ north of Michaelis-Bayswater Park.

Early archaeological surveys of New York by Parker (1922), cited above, and Bolton (1920, 1922, 1971) identified sites mainly on the northern and western shores of Jamaica Bay, especially along streams feeding the bay. As noted, Parker also identified a campsite on the east side of the bay, approximately 1.5 miles northeast of the project area.

There have been numerous cultural resource management archaeological surveys in and near the project area. The closest, adjacent to and partially within Michaelis-Bayswater Park, was a Phase I survey conducted by Louis Berger & Associates in 1992 and 1994 for the Liberty Pipeline Project. It included an alignment along Beach Channel Drive and Bay 32nd Street along the perimeter of the park, as well as a small triangular (50’ by 100’) work station within the park itself, at the intersection of Beach Channel Drive and Beach 35th Street. The Phase IA report noted that this work station was the site of a 15'-square office building with a surrounding porch (shown on the 1912 Sanborn insurance map), which was subsequently replaced by a dwelling (shown on the 1933 Sanborn). The Phase IA also noted that the pipeline alignment in Beach Channel Drive passed near several outbuildings associated with the 19th-20th-century Norton house. These historic properties are discussed in Section 4 below.

The Liberty Pipeline Phase IA recommended field reconnaissance and Phase IB testing in areas found to be sensitive for archaeological resources. The 1994 report of Phase IB investigations was not included in the digital report collection of the Landmarks Preservation Commission at the time of this writing, nor was it available from the New York Office of Parks, Recreation, and Historic Preservation on CRIS. Inquiries were made to the firm that conducted the study (Luhman, personal communication, 2020). The report has been archived by that firm and was not accessible due to the COVID 19 shutdown. Likewise, other possible repositories were closed during the time of the present survey. The report therefore has not been reviewed. A later study noted that the Berger studies did not identify any new archaeological sites (Historical Perspectives 2018). The Berger Project Manager, Jonathan Lothrop (now at the New York State Museum) recalls a recommendation for no further work following the IB (Lothrop, personal communication, 2020). It is not known whether any testing was conducted within or adjacent to the present project area.

The Historical Perspectives (1988) Phase IA survey cited for Boesch site #52 (see above) was performed for a U.S. Truck Body site on the north shore of the Rockaway Peninsula 2 miles west of Michaelis-
Bayswater Park. The survey concluded that the physical and environmental resources of the location were not sufficient to support a habitation site, and the marshy setting would not have provided a likely shellfish processing site. The authors note that the environmental conditions on the peninsula were less attractive for habitation, far less fertile and protected, than conditions on the northern and eastern shores of Jamaica Bay (Historical Perspectives 1988:25). As noted above, the survey cited a local collector who mentioned a woodland site and possible burial on the extreme eastern shore, presumably in the vicinity of the Healy property adjacent to Michaelis Bayswater Park.

The Arverne area, located south and west of Michaelis-Bayswater Park on the ocean side of the Rockaway Peninsula, was addressed in another early survey by Historical Perspectives (1989). The survey concluded that the post-glacial barrier beach would have been an unlikely location for precontact habitation or resource procurement that would result in archaeological deposits, and in fact no in-situ precontact sites are known for the area.

Historical Perspectives (2008) also completed a Phase IA survey for a sewer outfall at Chandler Street, located just under a mile to the northeast of Michaelis-Bayswater Park. The conclusions of that survey are pertinent to the present project, as they address a setting very similar to that covering the majority of Michaelis-Bayswater Park land, the portion that sits on fill:

...the pre-20th-century APE was a somewhat inhospitable environment, basically an area of periodically inundated mudflats and marshes, with the mouth of a creek at its center....the APE was given a rating of VERY LOW potential for hosting a precontact shell midden. Although a large shell midden once existed about 4,500 feet west of the APE [this is the one that presumably was on the former Healy property], the pre-fill APE environment was unlike that location or other documented precontact shell middens. Furthermore, there is no visible evidence of a shell midden in the deeply eroded sections of APE.

In addition, the Precontact Era discussion concluded that there is also a VERY LOW potential for deeply buried precontact archaeological remains submerged below the water table. Since ca. 2,000 years ago, sea levels have risen approximately 14 feet, creating the tidal mudflats, marsh, and creek mouth which existed on the pre-20th-century APE. Although it is certain that the environment of the APE and its vicinity was altered with the post-glacial sea level rise, whether or not the APE would have been an attractive location for human occupation and exploitation is purely speculative and cannot be determined with any level of certainty (Historical Perspectives 2008:12).

A fourth survey by Historical Perspectives (2018) covered an area of downtown Far Rockaway a half-mile to the east of Michaelis-Bayswater Park. The project involved design and reconstruction of streets and sidewalks and utilities installation. Because the project area was not along a waterway and had undergone extensive prior disturbance, the survey concluded that it had no remaining archaeological sensitivity.

Panamerican Consultants (Hayward et al. 2003, 2006) conducted a Phase IA survey and subsequent Phase IB testing covering several locations for the Jamaica Bay Ecosystem Restoration Project. The IA provided a general paleoenvironmental assessment for the area (see Section 2 above). One of the locations subjected to testing was in Bayswater State Park, located north of the present project area at Motts Point. The Phase 1A survey found this location to be sensitive based on the previously recorded finds of precontact remains in the vicinity and the environmental setting with uplands adjacent to filled
former marshlands—a similar setting to that of Michaelis-Bayswater Park—which may have been attractive for resource procurement campsites. The Motts Point location was considered to have potential for sub-marsh prehistoric sites and submerged historic sites as well. Testing or monitoring of upland and filled marshland locations was recommended. Upland locations were avoided, but Phase IB testing, reported in 2006, was conducted in order to address the potential for sub-marsh precontact resources. Mechanical trenching to depths of 6 to 9 feet was used to expose marsh deposits “in the form of organic peats and below-fill culturally sterile clays, fine silts, and coarse sand horizons” (Hayward et al. 2006:3-1). Five such trenches were excavated at Bayswater State Park, and a surface survey of the shoreline was also conducted. The trenches failed to recover any material from the organic or sand deposits beneath the fill layers, and the surface survey identified only remnants of 20th-century seawall, bulkhead, and pilings.

In 2011, JMA conducted an Archaeological Overview and Assessment of the Gateway National Recreation Area Jamaica Bay Unit (Baldwin et al. 2011). This study included locations immediately to the west of the present project area and discussed the overall environmental setting and current state of archaeological research. The report notes that early 20th-century surveys identified precontact sites on tidal creeks and streams within the Jamaica Bay Unit. However, the general assessment is summarized as follows:

Beginning with railroad and other construction in the late 1800s and accelerating after 1900, dredging, channeling, and landfilling dramatically transformed the islands, hassocks, and marshes of Jamaica Bay. ...[T]he extensive construction, dredging and landfilling activities that occurred throughout the bay prior to 1960 have probably obliterated the vast majority of its prehistoric and historic archeological sites. The possibility exists that former land surfaces have survived beneath the landfills or waters in certain areas (Baldwin et al. 2011:i).

The JMA conclusion as to shoreline resources is most pertinent to the present evaluation of Michaelis-Bayswater Park—like the Panamerican study for Bayswater State Park, the JMA study for the Jamaica Bay Unit pointed to the potential for precontact sites buried beneath landfill:

The current shoreline configuration of Jamaica Bay has a low probability of containing prehistoric sites. The previously reported sites within the Jamaica Bay Unit are likely buried beneath feet of fill deposited on the islands and in surrounding marsh areas. There is, however, the potential for archeological sites beneath filled in marshy areas. The nature of the development of a marsh involves the landward upward shoreline transgression of vegetation and that movement may have buried sites previously situated along the shoreline.

It is the opinion of JMA that buried/inundated archeological sites may be present along the old shorelines of the existing islands, and in areas where former streams were located.

4. Historic Background

Precontact Period

What is now coastal New York was inhabited by Native Americans for thousands of years, from the Paleoindian Period through and including the time of settlement by Europeans beginning in the 17th century. The following brief summary is based on Boesch’s 1997 overview of Queens and pertinent
synopses in previous archaeological survey reports (Historical Perspectives 2008; Hayward et al. 2003; Baldwin et al. 2011). Based on paleoenvironmental and archaeological data, the earliest arrivals, about 12,000 years ago, probably lived in small nomadic bands, gathering plant resources and hunting caribou and megafauna on the inland, tundra-like lands that are now coastal due to ensuing sea level rise. Paleoindian occupation of what is now New York City is known mainly from surface finds on Staten Island. There have also been finds in Suffolk and Nassau Counties. A fluted point was recovered in Bayside, Queens (written mistakenly as “Bayswater” in Boesch 1997, but actually on land overlooking Little Neck Bay on the north shore of Queens; see note in Historical Perspectives 2008:6). Another fluted point was found at the Wilkins Site, also near the north shore of Queens (near Powell’s Cove) (Boesch et al. 2000). It is thought that PaleoIndian sites in the greater New York area were submerged as sea levels rose. In the ensuing Archaic Period, from about 10,000 years ago to about 3,700 years ago, sea level continued to rise, probably continuing to inundate traces of habitation from the Early and Middle Archaic. The climate gradually came to resemble that of the historic period (by about 4,000 years ago), and flora and fauna that people could depend on for food became more varied. Archaic inhabitants of the Middle Atlantic region hunted deer and turkeys and utilized the plants associated with deciduous forests of oak, hickory, chestnut, beech, and elm. Swamps and mud flats formed, providing environments for waterfowl and shellfish. Plant processing and woodworking artifacts are found at Archaic sites in the region, and site types include fishing and hunting camps, rock shelters, shellfish collecting and processing stations, quarries and lithic workshop sites, mortuary sites, and semi-permanent villages.

The Woodland Period, from about 3,700 to 500 years ago, is represented by more sites in coastal New York compared to earlier periods. Woodland peoples were increasingly sedentary, with permanent or semi-permanent villages (usually located on the second terrace above water along streams and bays) as well as temporary campsites inland. They hunted deer, turkey, raccoon, muskrat, birds and waterfowl, fished, and processed enormous quantities of shellfish. Domestication of plants probably occurred in the Middle Woodland, and by the Late Woodland horticulture was part of the subsistence base, though its relative importance is debated. Pottery was adopted in the Early Woodland, with ceramic vessels gradually replacing the steatite bowls of the Archaic.

Contact, Colonial and Federal Periods

When historical accounts began, the general area of southwestern Long Island was occupied by Munsee-dialect speakers of the broader group of Delaware (or Lenape) Indians. The name Rockaway comes from Rackeaway or Rahawacke, “sandy place” (Grumet 1981:41). Rechqua Akie was the main settlement of the Rockaway Indian subgroup. Grumet places this village in Far Rockaway, and Historical Perspectives suggests that the village may correspond to the NYSM site #4050 recorded by Parker, but Bolton places Rechqua Akie at present-day Rockville Center or Near Rockaway, and Thompson’s History of Long Island also states that the greater part of the Rockaway Indian population was at Near Rockaway (Thompson 1839; Bolton 1922:313-314; Grumet 1981:47; Historical Perspectives 2018:6). The name “Near Rockaway” was changed in 1869 to East Rockaway.¹ Though no villages are documented near the project area, shell heaps were formerly located along the eastern shore of Jamaica Bay in Bayswater just north and east of Michaelis-Bayswater Park, as noted in Section 3.

¹ To confuse matters, at least one historic map, a coast survey from 1861, labels the center of Far Rockaway as “Near Rockaway,” apparently in error.
Bellot, in his *History of the Rockaways* (1917), notes that a 1642 meeting at which Native American sachems met with Dutch leaders to complain of grievances took place “in the woods near Rockaway”—this is apparently the first mention in historical records of the area. Violence ensued when no agreement was reached, but the Indians convinced Dutchmen David DeVries and Jacob Olfertsen to come out to Rockaway for another meeting in the spring of 1643. The Dutch representatives reported that they saw 300 people living there in 30 wigwams, and that the chief hosted them overnight, regaling them with oysters and fish. Relations were apparently calmer during the late 1640s through the end of the Dutch period (Bellot 1917:9), and settlement of what is now Queens and Hempstead would increase greatly during the English colonial period. The Rockaway Indians paid an annual rent of 5 bushels of winter wheat to the English governor for occupancy of the Rockaway peninsula, but they sold their interest in the land to John Palmer in 1685. This sale included the present project area. Governor Dongan confirmed the sale, and though the town of Hempstead disputed it, Palmer secured his title and sold 8,000 acres to Richard Cornell in 1687. Portions of the property were sold off in tracts to other early Queens and Long Island families over the course of the 18th century, and in 1809 sixteen of Richard Cornell’s great-grandsons partitioned the remaining 2,000 acres into 46 lots (Bellot 1917:20).

The Norton Period

A number of the subdivided Cornell properties were acquired by the very well-connected John L. Norton (1774-1854) of Hempstead in 1830. Norton was the first to recognize and promote the Rockaways as a summer resort, and following the Cholera epidemic of 1832 he was instrumental in establishing the Rockaway Association and their construction of the Marine Pavilion, a fine hotel on the Atlantic shore (Supreme Court Appellate Division – Second Department 1896; Bellot 1917:83). Norton’s own house was located northwest of the Pavilion, immediately adjacent to the southeast side of the present project area. The Norton house and the Marine Pavilion are both shown on the 1835 U.S. Coast Survey Map of the south shore of Long Island (Renard 1835) (Figure 4).

Samuel R.B. Norton, John L. Norton’s son, came to own large landholdings in Far Rockaway, and in 1842 he placed them under the control of a trust acting in the interest of his wife Ann Norton (1807-1892) (Queens County Deed 57 164). Samuel Norton was listed in the U.S. Census of New York in 1840 and again in 1850 and 1860, when he was identified as a farmer in the Town of Hempstead along with Ann and their son Franklin (14 years old in 1850) (US Census of NY 1840, 1850, 1860). The “S. Norton” house was shown on the 1852 map of Kings and Queens Counties (Conner 1852) (Figure 6). In 1862 Ann Norton was given full title to the family’s lands, which, having apparently been resurveyed, were described as including a 54-acre farm on Jamaica Bay (Queens County Deeds 195 45 and 48). Samuel and Ann were both listed as residents of Hempstead in the 1870 census, and their house was depicted on the Beers map of 1873 (Figure 7) (US Census of New York 1870; Beers 1873). Samuel R.B. Norton died intestate in 1877 (Queens County Letter of Administration O 108).

Franklin C. Norton (1838-1915) was a large landowner and one of the leading developers of Far Rockaway. The Norton house was listed as belonging to “F. Norton” on the 1891 Wolverton Atlas of Queens County (Figure 8). The house sat just across Beach Channel Drive from present-day Michaelis-Bayswater Park, to the west of Bay 32nd Street. In 1894, the other Norton heirs conveyed to Franklin C. Norton their rights to several properties, including the tract of land on which the house stood, bounded on the southeast by the railroad, northeast by Bay 32nd Street (to a point “between Ocean Crest Boulevard and Falcon Ave.,” which was then the shoreline of Jamaica Bay), northwest by the Bay, and
southwest by Norton’s Creek (Queens County Deed 968 169). Franklin [C.] Norton was listed as a “Landlord” on Channel Avenue (now Bay 32nd Street) in Queens in the US Census of New York for 1900. The 1901 and 1907 atlases of Queens (Ulitz 1901, 1907) showed that he had a hotel on his property, with outbuildings to the rear extending into the project area (Figure 10a). The house itself had likely been expanded and converted into the hotel. The 1901 Sanborn-Perris Map labels the hotel as occupied by a caretaker. There was no development of the property that lay to the west of Norton Creek, presently the southern portion of Michaelis-Bayswater Park, as of 1907 (Figure 10b).

By 1909, the hotel was named the Ashton, still owned by Norton (Bromley and Bromley 1909). Additional buildings were shown to the rear of the hotel. Within the present park boundary, the Sanborn map of 1912 shows the “Edgemere Boat Wks.” on the north side of Norton Basin, in the location of an outbuilding that had been shown on the 1909 map. One newspaper citation has been found for the boat works, from November 1911, when the Brooklyn Daily Eagle announced the christening and launch of a “power yacht” from the works, presumably built on site. An office building stood at the far south end of the present park at the intersection of Beach Channel Drive and Beach 35th Street in 1912 (this building was noted in the Berger 1992 Liberty Pipeline Phase IA survey cited above) (Sanborn Map Company 1912). Both the boat works and the office stood on presumed Norton property. Franklin C. Norton, died in 1915 (Queens County Will 99 214; “Franklin C. Norton Dies” 1915).

The Queens atlas of 1919 and the insurance map of 1922 (Ulitz 1919; Sanborn Map Company 1912/1922) show the Ashton House, with numerous outbuildings to the rear, including the boat works (Figure 11). On the latter map, the hotel is at center right, and the Edgemere Boat Works is at the upper left. Several houses had been built within the project area by 1922, one across from Ocean Avenue (now Falcon Avenue) and a cluster of five at the north end of Beach 35th Street. A row of stores stood within the southern end the project area at the intersection of Far Rockaway Boulevard (Beach Channel Drive) and Beach 35th Street. A photograph of “The Ashton” from this time period is reproduced in Figure 18. The hotel would be demolished in the late 1920s.

The City Park Period

Michaelis-Bayswater Park was 40 years in the making. In 1925, the City of New York had asserted that it owned the property on which the park now sits as part of the shore lands transferred to the City by the State. The Best Renting Company, however, having purchased the property by that year, also claimed it. The New York State Court of appeals, in a 1928 ruling that cited the original 17th-century grant to Palmer, upheld private ownership of the waterfront, and therefore ruled that the property belonged to the private owners (New York City Department of Parks and Recreation n.d).

Having lost its claim to the property, the City bought the initial 15.4 acres from the Best Renting Company on October 14, 1931, for $120,000 and transferred the land to [the Parks Department] on the same day. Of that, 11.4 acres were underwater. Although workers cleared the site, facilities remained meager. The park offered only a stretch of waterfront and a backstop for baseball -- the infield and outfield were non-existent.

Aerial photographs document filling over time to create the larger land area occupied by the park of today. The 1924 photograph (Figure 12) shows that by that time substantial filling had taken place in the former marshlands in the northern half of the park. It is likely this massive filling was preparatory to which forms the north boundary of the park (Sanborn Map Company 1912/1922). The streets and lots
anticipated residential development and extension of the street grid westward. The 1922 insurance map shows paper streets and housing lots laid out to the north and south of the alignment of Dwight Street, within the park were never developed, and in fact the marshland covering the northeast corner of the park would remain unfilled until the 1960s.

The 1954 aerial photograph (Figure 13) shows the development that had occurred on the lots on the south side of Norton Basin between 1924 and mid-century, especially along Beach 38th Street and Beach 36th Street. Almost all of the houses would be demolished between 1966 and 1980, as shown on subsequent aerials (Environmental Planning and Management 2019).

The 1954 aerial also shows rows of structures in the northern part of the park. These appear to have been removed by 1962, when the next aerial photograph was flown (Environmental Planning and Management 2019). These structures are here tentatively identified as pre-fabricated military Quonset huts, semicircular in cross section based on the shadows visible in the aerial (New York City Housing Authority 2009; Schulz 2017). The huts were probably brought here as part of a post-war veterans housing program proposed by Robert Moses:

When veterans returned to NYC from WWII, they were met with a Depression-era housing shortage that resulted from a nearly 15-year lack of new development. To immediately address the issue, “master builder” Robert Moses (who by this time was reigning over the city’s public housing projects) proposed erecting Quonset huts on vacant land in Brooklyn and Queens. These curved, corrugated steel “shacks” were used in the Pacific as barracks and offices, as they were lightweight and quick and easy to assemble. ...the city agreed to use more than 500 Federal surplus huts as temporary public housing on land along the Belt Parkway in the South Brooklyn neighborhoods of Canarsie and Jamaica Bay, as well as in Jackson Heights, Middle Village, and Corona in Queens. Moses’ idea, however, did not go according to plan. The huts took longer than expected to arrive and builders were unaware of the work involved of retrofitting them as living spaces. Veterans were not happy with the conditions, complaining of a lack of heat in the winter (despite the potbellied stoves that were installed in the living rooms) and leaks (Schulz 2017).

However, four roughly circular patterns located to the south of the huts (and apparently within the facility’s perimeter fence) may be the bases of communications towers, suggesting that the facility may have served a purpose other than simply veterans housing. A building, possibly an office or storage building, that appears to have been built on slab stood adjacent to the east of the Quonset huts. Soil borings (B-3 and B-4) conducted in the area of the Quonset facility indicate fill here extending to a depth of 11 feet, underlain by silt (see Appendix C).

After removal of the Quonset huts and communication towers, a road appears to have followed the perimeter of the area where they had stood. This area of the present-day park may have been in use as a staging area for the substantial landfilling that was taking place immediately adjacent to the west and north. The rectangular slab from the 1950s building on the site is still apparent in the 1966 aerial (Figure 14).

A number of houses were built along the streets that extended into the southern portion of the present park by the mid-20th century, as shown on the 1954 and 1966 aerials. Most of these would be demolished by 1980.
The City expanded the park and substantially upgraded the recreational facilities in the late 1960s. The new park was named to honor community member Jules Michaelis, who had been instrumental in the development (New York City Department of Parks and Recreation n.d.). 1968 park plans are included in Appendix B of this report. Subsequent refurbishment took place in 1996, and most recently a 2017 renovation included a skate park built on the site of a former hockey rink in the northern part of the park along Bay 32nd Street as well as a renovated entrance and plaza area next to the skate park; game tables; and new seating, bike racks, and plantings. Infrastructure serving park facilities includes buried sewer, electric, and water lines.

5. Field Reconnaissance

A field visit was conducted by Leonard G. Bianchi and Jean Howson on May 22, 2020 (see Photographs 1 through 21; additional Photographs 22 through 26 from a 2018 reconnaissance were provided by the design team). The main focus of field reconnaissance was to examine conditions in the portion of the park that was represented as fast land on early maps, as this is considered the most sensitive area for both precontact and early historic period resources. The flat, filled land in the northernmost, western, and southernmost parts of the park (see Photographs 7, 9, 10, 19, 21, and 25 through 27) were considered unlikely to have visible indications of what would likely be deeply buried former surfaces. The entire shoreline was not walked. The portions of shoreline that were observed were strewn with small pieces of modern debris.

The New York City Department of Parks and Recreation (2018) Michaelis-Bayswater Park South Salt Marsh Restoration Project is under way along the south shore of Norton Basin (Photographs 1 through 3; Figure 19). That project has involved removal of debris and invasive plants, minimal grading, planting of native low marsh and high marsh species, and provision for continued informal public access in the form of a natural surface trail (CEQR #18DPR004Q).

The park area within the historically-mapped fast land is heavily landscaped and contains numerous concrete structures such as walls, steps, pools, fountains, and a sprinkler feature (Photographs 11 through 18, 20). Markers and manholes for numerous utility lines cross this portion of the interior of the park. The perimeter areas near the easternmost corner of the park present an undulating landscape, which was created in 1968. Planting beds are maintained within this area. Numerous mature trees that appear to date from that period, which are to be preserved, are also present within this area, and along the walkways further into the interior.

In addition to buried park utility lines (water, storm and sanitary sewer, electrical), a 108”x48” sewer line in a 39-foot wide DEP access corridor runs through the park from the Falcon Street entrance to an outfall on the north side of Norton Basin. The sewer line was installed in conjunction with the 1968 park rebuild. Gas, sewer, and water lines run beneath sidewalks and streets surrounding the park.

No surface indications of archaeological resources relating to either precontact occupation or the 19th-century Norton occupation were observed. Debris along the shore may relate to the 20th-century boat works on the Norton property (Photograph 24). In general, artifacts scattered on the surface in the filled areas and along the shoreline indicate the fill that is known to be present from the historic maps and borings data. For example, a surface scatter of bottle glass, ceramics, and construction material (brick, concrete, and window glass) was noted in the area of Photographs 6 and 7, just east of the concrete
headwall at the east end of Norton Basin. The material, characteristic of a landfill deposit, was within the corridor of a large culvert that extends from the east end of the Norton Basin shoreline to Beach Channel Drive. The pre-fill channel was known as Norton’s Creek.

6. Assessment of Archaeological Potential

Precontact period resources

The potential for encountering intact precontact period archaeological resources within the project area is considered to be low due to the history of the landform, which is largely filled-in former marsh; and historic-period disturbances, mainly from park construction within the area that was mapped historically as fast land. This former upland is discussed first.

The location of Michaelis-Bayswater Park, and in particular that portion of the park that was mapped historically as fast land, would have been attractive for precontact occupation. It contains dry land overlooking the marshes bordering Jamaica Bay, and was near a historically-documented Contact Period village, probably located further inland. Prior to the inundation of the eastern shores of the bay and formation of the marshes that were present historically, dry land may have extended across the entire footprint of the park.

The easternmost, fast-land portion of Michaelis-Bayswater Park has undergone extensive landscaping and disturbances from installation of various hardscape features and construction of park facilities and infrastructure. Even before the 1968 park construction, beginning in the 1920s, filling took place over most of the present park property. In that period, the upland portion may have been cut down, although no documentary evidence of such action has been found.

The 1968 park design included significant cutting and filling as well as construction involving subsurface disturbances (see plan sheets in Appendix B). Not all of the features depicted on the 1968 plans are extant – the northern concrete step feature, for example, was either never built or was replaced in a later renovation. The field reconnaissance confirmed the artificial landscape around the perimeter of the main facilities, with mounds and planting beds creating an undulating effect. Mature trees now stand within these areas. The hardscape is substantial and includes concrete walls, pavements, a large stepped feature, and pools and fountains, most dating to the 1968 park or to later renovations. The comfort station stands on the west side of the former fast-land area.

It is also important to note that as early as 1830, historic development began on the small area of upland within the present-day park, as discussed in Section 4 above and in the following section on historic period archaeological potential. Removal of shell middens is likely, and the Nortons’ use of their property would have centered on the best-drained ground just north of the house, including for possible early, unmapped outbuildings. Thus, long before the city acquired the land and began altering the landscape, there would have been disturbances to the high ground and possibly to traces of earlier occupation.

Plans for the reconstruction of the park in this area include removal of the above-grade portions of concrete walls, of paving and concrete steps and curbs, and of the comfort station. New features will include completely redesigned playground and picnic areas, which are to have a less robust environmental profile. Soil removal will typically be to depths of no more than 2 feet, however, and in
many locations filling will occur. Most mature trees are to be preserved. As an example, Figure 20 shows existing and proposed plans for a central part of the playground area. Note that elevations overall will change little in this intensively regraded area.

Turning to the filled marsh and bay areas that lie north, west, and south of the former upland area, any traces of occupation would be buried beneath both fill and former marsh strata. The depth of fill along the water on the north side of Norton Basin is 6 to 8 feet (Borings 8 and 16). As noted in Section 2, the furthest west of the borings (Boring 3) encountered the peat layer below 11 feet of fill, followed by sand and clay and then another peat layer at 21 feet below the surface, suggesting successive marsh formations. The marsh areas outlined on Figure 17 are those that were mapped in 1899 (Figure 9). Earlier topographic maps (see Figures 4 and 5) show different configurations, and this is not only a matter of cartography but likely reflects the fact that marsh and shoreline did shift and continue to shift over time.

As discussed in Section 3 above, two previous archaeological assessments of Jamaica Bay by Panamerican Consultants and JMA (Hayward et al. 2003, 2006; Baldwin et al. 2011) suggested that testing or monitoring would be appropriate where potential exists for archaeological deposits that were inundated, covered by marsh and later filled. Consideration was therefore given to possible testing at Michaelis-Bayswater Park. The testing conducted at Bayswater State Park by Panamerican in 2006 failed to identify any archaeological resources, and though visibility in the test trenches was hampered it is most likely that no remains were in fact present beneath the marsh and fill. A third archaeological study, for a shoreline site in Far Rockaway (Historical Perspectives 2008) assessed potential as very low for “an area of periodically inundated mudflats and marshes” similar to the entire western, northern, and southern portions of Michaelis-Bayswater Park. Although the presence of archaeological deposits in the filled area dating from before the Woodland Period is possible, proposed project actions are unlikely to penetrate to depths that would encounter such deposits. The proposed loop path will not penetrate the fill. The pilings for the two boardwalks will extend into the fill and may penetrate it, but are unlikely to disturb deposits lying beneath the former marsh stratum.

In summary, based on the preceding discussion, although the location may well have been attractive for precontact (or contact-period) Native American habitation or resource procurement, the potential for precontact archaeological resources is assessed as very low throughout the Area of Potential Effect (APE) within Michaelis-Bayswater Park. This is because the planned subsurface actions will impact either formerly disturbed locations or layers of fill and former marsh.

Historic period resources

The historic archaeological sensitivity of the park would be associated with the Norton period. The post-World War II use of the grounds for apparent veterans housing, while fascinating, would be better studied through oral history with children who may have lived in the Quonset homes and documentary research. As noted in Section 4, John L. Norton probably built his house circa 1830. It stood adjacent to the present-day park on its southeast side, in the location of the Beach Channel Shopping Center across Beach Channel Drive. The park covers the land just to the north and west of the house. The orientation of the original house is not known – it may have faced west toward the bay. The first map that shows it on a road is the 1873 Beers Atlas (Figure 7), and by that time it probably faced the road, with the rear grounds extending into the present park. Archaeological resources associated with the Norton residence
may have been extant to the north of the house, but shaft features such as privies likely would not have been more than 100 feet from the dwelling, possibly sited beneath the wide roadway of present-day Beach Channel Drive but not within the present park itself. If the house once faced toward the bay, the area to its north probably would have been landscaped, possibly cultivated or used for formal gardens. When the Norton house faced south, it is possible this area contained gardens, barns, sheds, or other outbuildings. In the 20th century, three sheds, a garage, and a boat house associated with the Norton House/Ashton Hotel were sited within the area of the park that are now covered by tennis courts, paved walks, grass and shoreline vegetation. These structures were apparently built after this location, originally swampy based on topographic maps, was stabilized with fill soil sometime between 1907 and 1912.

As noted above, the area north of the Norton house within the park may have been cut down when the adjacent marsh was being filled in the early 20th century. Such actions, along with the construction and subsequent demolition of the Norons’ 20th-century sheds, garage, and boathouse, are likely to have disturbed evidence of the earlier historic period. Important information is not likely to be gleaned from buried debris from the demolition of the 20th-century structures. Later, the construction of Michaelis-Bayswater Park in 1968 entailed additional ground disturbance, again affecting any buried deposits from the 19th century.

It is very likely that remains associated with the Edgemere Boat Works, which was established on the north side of Norton Basin circa 1909, are extant—some concrete debris visible on the surface may be from the boat works. However, again, such remains are not considered likely to provide significant new information on local history, though further documentary research might be productive.

In summary, though remnants of 20th-century structures are likely to be extant below ground within portions of the park, the potential for intact deposits representing the earlier Norton occupation, dating to 1830, is considered very low. This is due both to the distance of the main dwelling (and associated shaft features) from the park grounds, and to subsequent subsurface disturbances that would have disturbed more ephemeral archaeological evidence that could address important questions about how the Norons used the grounds surrounding their house over time.

7. Recommendations

The information compiled for this Archaeological Documentary Study indicates a potential for precontact or contact-period Native American use of the project area, and shows that the location was part of a historic period estate developed by John L. Norton in circa 1830. However, due to a record of 20th century subsurface disturbance, the fact that much of the park is built on fill, and a limited vertical APE, it is concluded that the proposed reconstruction of Michaelis-Bayswater Park is unlikely to impact intact archaeological resources associated with either period of occupation. No archaeological testing is recommended.
References

Baldwin, Geraldine E., Katherine L. Farnham, T. Arron Kotlensky, and Patrick J. Heaton (JMA)
2011 Archeological Overview and Assessment, Gateway National Recreation Area Jamaica Bay Unit, Kings and Queens Counties, New York. Prepared for Northeast Region Archeology Progra, National Park Service.

Beers, Frederick W.

Bellot, Alfred H.

Boesch, Eugene J.

Boesch, Eugene J., Leonard Bianchi, and Jean Howson

Bolton, Reginald P.

1922 Indian Paths in the Great Metropolis. Indian Notes and Monographs, Museum of the American Indian, Heye Foundation, New York.

Bromley, George W. and Walter S. Bromley

Conner, R. F. O.

Environmental Planning and Management, Inc.
2019 Phase I Environmental Site Assessment, Bayswater Park, 701 Bay 32nd Street, Block 15745, Lot 1, Queens, New York 11691. Prepared for New York City Department of Parks and Recreation.

Farrockaway.com
Franklin C. Norton Dies

Grossman & Associates

Grumet, Robert S.

Hassler, F.R.

Hayward, Michele H., Arnold Pickman, Mark A. Steinback, Stephen R. James, Edward V. Curtin, and Michael A. Cinquino (Panamerican Consultants)

Hayward, Michele H., Edwin W. Button, and Michael A. Cinquino (Panamerican Consultants)

Historical Perspectives, Inc.

2008 Phase IA Archaeological Assessment, Chandler Street Sewer Outfall, Far Rockaway, Queens, NY, Prepared for the NYCDCC.

Junken, Charles

Lothrop, Jonathan (New York State Museum)
Louis Berger & Associates
1992 Phase IA Historical and Archaeological Survey Liberty Pipeline Project Queens and Nassau Counties, New York. Prepared for the Liberty Pipeline Company, Houston, TX.

Luhman, Hope (WSP, formerly Louis Berger & Associates)

MFS (MFS Consulting Engineers and Surveyor, DPC)

New York City Department of Parks and Recreation

New York City Housing Authority

Normandeau Associates, Inc.
2019 Jurisdictional Wetlands and Waters and Biobenchmarking Report, New York City Department of Parks and Recreation, Michaelis - Bayswater Park, Queens County, New York.

Parker, Arthur C.

Power Yacht Launched
1911 “Power Yacht Launched” Brooklyn Daily Eagle, November 1, p. 23.

Queens County Deeds

Queens County Letters of Administration

Queen County Wills
Renard, C.
1835 United States Coast Survey Map of the South Coast of Long Island between the Pavilion of Rockaway and the Plum-gut. Washington D.C.

Sanborn Map Company
1912
1912/1922 (1912 map updated to 1922)
1933

Saunders, Cece
2020 Personal communication via email regarding 1988 interview with Steve Feldman.

Schulz, Dana

Thompson, Benjamin Franklin
1839 History of Long Island: Containing an Account of the Discovery and Settlement; with Other Important and Interesting Matters to the Present Time. E. French, New York.

Ullitz, Hugo
1907

US Census of New York
1840
1850
1860
1870
1900
1910

U.S. Coast and Geodetic Survey

U.S.G.S.
2019 Far Rockaway and Lawrence, NY Quadrangles

Walling, H. F.
Web Soil Survey
2020 Soil Map, Queens County, New York.

Wolverton, C.
FIGURES
Figure 1. Project location shown on U.S.G.S. Far Rockaway and Lawrence, NY Quadrangles (2019).
Figure 2. Project location shown on street map.
Figure 3. Project location shown on aerial photograph (Nearmap image).
Figure 4. Detail from the 1835 Coast Survey (Renard 1835). The arrow points to the Northon house.
Figure 5. Detail from the 1845 Hassler map. The arrow points to the Norton house.
Figure 6. Detail from the 1852 Conner map. The arrow points to the Norton house.
Figure 7. Detail from the 1873 Beers Atlas. The arrow points to the Norton house. Note Judge Healy’s house to its north.
Figure 8. Detail from the 1891 Wolverton Atlas, with project area outlined in red.
Figure 9. Detail from the 1899 U.S. Coast Survey. The project area is outlined in red. The Norton house is not shown, although it was standing at the time of this survey.
Figure 10a. Detail from 1907 Atlas of Queens (Ullitz 1907). The project area boundary is shown in red.
Figure 10b. Detail from 1907 Atlas of Queens (Ullitz 1907). The project area boundary is shown in red.
Figure 11. 1922 Sanborn Insurance Map, updated from 1912. The project area boundary is shown in red.
Figure 12. 1924 aerial photograph, with project area outlined in red.
Figure 13. 1954 aerial photograph, with project area outlined in red.
Figure 14. 1966 aerial photograph, with project area outlined in red.
Figure 16. Boring locations. See Appendix C for details.
Figure 17. Shoreline and marshlands as shown on the 1899 coast survey overlain on a current aerial photograph. The irregular marshy areas outlined in green and the channels between them would have shifted over time. The channel of Norton’s Creek can be seen extending southeast from present-day Norton’s Basin. It is now in culvert through the southern portion of Michaelis-Bayswater Park.
Figure 18. Postcard of the Ashton Hotel circa 1920. Farrockaway.com.
Figure 19. Map showing the area of the Michaelis-Bayswater Park South Salt Marsh Restoration Project, 2017.
Figure 20. Comparison of existing and proposed play area. Details from topographic plan and Playground Grading Plan Enlargement, Plan Sheet L408.
PHOTOGRAPHS
Key to photograph locations.
Photograph 1. View to northwest from north end of Beach 37th Street. May 2020.

Photograph 2. View to northwest from north end of Beach 36th Street. May 2020.
Photograph 3. View to east-northeast at north end of Beach 36th Street. May 2020.

Photograph 5. View to west-northwest up the basin. May 2020.

Photograph 7. View to south, section of park between Beach Channel Drive and Beach 35th Street. May 2020.

Photograph 10. View to northeast with comfort station at left in the background. May 2020.
Photograph 11. View to northwest, with concrete wall at right and comfort station in background. May 2020.

Photograph 12. View to north of paved playground. Sculptures and sprinkler feature are in the background.
Photograph 13. View to west from corner of park at Beach Channel Drive and Bay 32nd Street. Note landscaping feature at right. May 2020.

Photograph 15. View to southeast from sidewalk along Bay 32nd Street showing undulating landscape, part of the 1968 design. May 2020.

Photograph 16. View to south along Bay 32nd Street at Ocean Crest Boulevard, May 2020.
Photograph 17. View to southwest through park toward comfort station from Bay 32nd Street. May 2020.

Photograph 18. View to northwest from north of handball courts, with Bay 32nd Street at right. May 2020.

Photograph 20. View to southwest at entrance opposite Falcon Avenue showing recent park improvements. May 2020.

Photograph 22. View to south along shoreline on the west side of the park. December 2018.
Photograph 23. View to north along shoreline on the west side of the park. December 2018.

Photograph 26. View to south from east ball field. October 2018.
Photograph 27. View to southwest across west ballfield. October 2018.
APPENDICES
APPENDIX A

Project Plans
CONTRACT DRAWINGS FOR
RECONSTRUCTION OF
MICHAELIS-BAYSWATER PARK
LOCATED ALONG BEACH CHANNEL DRIVE,
BAY 32ND STREET AND NORTON AVENUE

BOROUGH OF QUEENS
CONTRACT NO. Q007-120M

LIST OF STANDARD DETAIL SHEETS APPLICABLE BUT NOT INCLUDED

<table>
<thead>
<tr>
<th>SHEET TITLE</th>
<th>DET. SHEET NO.</th>
<th>REV. DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTRUCTION SIGN</td>
<td>TYLA/146-R9 - #1</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>DRAINAGE DETAILS - No. 1</td>
<td>TYLA/146-R9 - #2</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>DRAINAGE DETAILS - No. 2</td>
<td>TYLA/146-R9 - #3</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>STORMWATER MANAGEMENT DETAILS</td>
<td>TYLA/146-R9 - #4</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>PARKS LEAF MANHOLE AND CATCH BASIN COVERS</td>
<td>TYLA/146-R9 - #5</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>WATER SUPPLY DETAILS - NO 2</td>
<td>TYLA/146-R9 - #6</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>DRINKING FOUNTAIN - TIRE F</td>
<td>TYLA/146-R9 - #7</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>BOTTLE FILLER</td>
<td>TYLA/146-R9 - #8</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>PAVEMENT DETAILS - NO 1</td>
<td>TYLA/146-R9 - #9</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>PAVEMENT DETAILS - NO 2</td>
<td>TYLA/146-R9 - #10</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>CURBS AND CURBS</td>
<td>TYLA/146-R9 - #11</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>FLAGPOLE FOUNDATION</td>
<td>TYLA/146-R9 - #12</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>CONCRETE AND STEEL GAME TABLE</td>
<td>TYLA/146-R9 - #13</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>GAME TABLE LAYOUT AND BIKE RACK</td>
<td>TYLA/146-R9 - #14</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>BENCH, 1984 WORLD'S FAIR</td>
<td>TYLA/146-R9 - #15</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>PICNIC TABLE - FIXED</td>
<td>TYLA/146-R9 - #16</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>CHAIN LINK FENCE - DETAILS</td>
<td>TYLA/146-R9 - #17</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>CHAIN LINK FENCE - SINGLE GATE</td>
<td>TYLA/146-R9 - #18</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>STEEL FENCE DETAILS</td>
<td>TYLA/146-R9 - #19</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>2'-0" HT./3'-0" HT. STEEL FENCE & WICKET FENCE</td>
<td>TYLA/146-R9 - #20</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>4'-0" HT. STEEL FENCE</td>
<td>TYLA/146-R9 - #21</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>STEEL GUIDE RAIL - BOLLARD DETAILS</td>
<td>TYLA/146-R9 - #22</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>TIMBER BARRIER RAIL - BOLLARD DETAILS</td>
<td>TYLA/146-R9 - #23</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>HOODED BASEBALL BACKSTOP</td>
<td>TYLA/146-R9 - #24</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>ATHLETIC FIELD DETAILS</td>
<td>TYLA/146-R9 - #25</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>BALLFIELD LAYOUTS - NATURAL TURF</td>
<td>TYLA/146-R9 - #26</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>BALLFIELD DETAILS</td>
<td>TYLA/146-R9 - #27</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>BASKETBALL BACKBOARD - POLYCARBONATE</td>
<td>TYLA/146-R9 - #28</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>BASKETBALL BACKSTOP - DOUBLE POST</td>
<td>TYLA/146-R9 - #29</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>BASKETBALL COURT LAYOUTS</td>
<td>TYLA/146-R9 - #30</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>TENNIS COURT LAYOUT AND DETAILS</td>
<td>TYLA/146-R9 - #31</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>HANDBALL COURT AND BACKSTOP DETAILS</td>
<td>TYLA/146-R9 - #32</td>
<td>05/07/2018</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SHEET TITLE</th>
<th>DET. SHEET NO.</th>
<th>REV. DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAY SWING - 10'-0' HIGH</td>
<td>TYLA/146-R9 - #33</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>SWING - 8'-0' HIGH</td>
<td>TYLA/146-R9 - #34</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>SAFETY SURFACING DETAILS</td>
<td>TYLA/146-R9 - #35</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>PLANTING DETAILS</td>
<td>TYLA/146-R9 - #36</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>TREE PROTECTION AND SEDIMENT CONTROL</td>
<td>TYLA/146-R9 - #37</td>
<td>05/07/2018</td>
</tr>
<tr>
<td>HANDBALL COURT AND BACKSTOP DETAILS</td>
<td>TYLA/146-R9 - #38</td>
<td>05/07/2018</td>
</tr>
</tbody>
</table>
LAYOUT NOTES

1. THE CONTRACTOR SHALL NOTIFY ALL EXISTING RTD CONSTRUCTORS, BOTH HIGH AND MEDIUM VOLTAGE, OF THE SURFACE AND SUBSURFACE LOCATIONS OF UTILITIES BEFORE BEGINNING WORK TO THE ATTENTION OF THE SUNSET ENGINEER AND PURDUE MANAGER PRIOR TO COMMENCING WORK.

2. LOCATIONS OF EXISTING TREES SHALL BE IDENTIFIED IN THE FIELD.

3. NO CONSTRUCTION SHALL BE MADE TO THE DESIGN OF LAYOUT WITHOUT THE WRITTEN APPROVAL OF THE LANDSCAPE ARCHITECT. LIST OUT ALL WORK AS DESCRIBED ON THE PLANS, WRITING DIMENSIONS SHOWN, NOT SCALING.

4. CONTRACTOR SHALL LAY OUT AND EARTH IN THE FIELD THE ALLOWANCE AT ALL PATHS, PAVEMENT, AND AT THE OUTER EDGE OF THE NEW LANDSCAPE MATERIAL – CONTRACTOR IS NOT TO PROVIDE FOR ADDITIONAL MOUNDS OF MATERIAL.

5. ALL NEW PAVEMENT CURB LINES AND EXISTING PAVEMENT CURB LINES TO BE MADE IN KNOTH MATTER MATERIAL (ADHESIVE MIXTURE) AND TO BE BUILT AND CURB LINES TO BE BUILT TO TABLE SIZE 51" 32% (1,500 MM). ALL CURB LINES SHALL BE BUILT TO TABLE SIZE 51" 32% (1,500 MM) AND CURB LINES SHALL BE BUILT TO TABLE SIZE 51" 32% (1,500 MM). ALL CURB LINES SHALL BE BUILT TO TABLE SIZE 51" 32% (1,500 MM).

6. ALL NEW PAVEMENT CURB LINES AND EXISTING PAVEMENT CURB LINES MUST MEET THE QUALITY STANDARDS AS PER THE CONTRACTOR'S REQUIREMENTS. ALL PAVEMENT CURB LINES MUST MEET THE QUALITY STANDARDS AS PER THE CONTRACTOR'S REQUIREMENTS. ALL PAVEMENT CURB LINES MUST MEET THE QUALITY STANDARDS AS PER THE CONTRACTOR'S REQUIREMENTS.

7. THE CONTRACTOR SHALL PROVIDE OR SECURITY GUARD AS DESCRIBED IN THE HARVEST OF EXISTING TREES.

8. THE CONTRACTOR SHOULD AVOID CURB CUTS WITHIN THE 59.0" HIGH FOR ALL TIMES AND PAVEMENT CURB LINES TO BE MADE IN KNOTH MATTER MATERIAL (ADHESIVE MIXTURE).

9. THE CONTRACTOR IS RESPONSIBLE FOR IDENTIFYING LOW-LYING PLANTS AND ENSURING THE CURB LINES DO NOT DAMAGE OR AFFECT THE LOW-LYING PLANTS.

10. PARK SECURITY LAMPS SHALL BE 3" 3" C.L. FROM EDGES OF PAVEMENT.

11. STAIRS MAY BE STEP UP TO STEPS AND ENSURE APPROPRIATE ALIGNMENT. FOR MORE INFORMATION SEE LOCAL STEPS AT STEPS DETAIL.

LEGEND

- PROPERTY LINE
- STATION LINE
- CONSTRUCTION LIMIT LINE
- AREA ECONOMY
- ID POINT
- CURVE ID
- LAYOUT SEGMENT
- CURVE ID (SEE CURVE TABLE ON SHEETS LUT 06-1113 EXTENDED)
APPENDIX B

1968 Park Plans
APPENDIX C

Borings Data
BORING NUMBER B-1

CLIENT NV5 New York
MFS PROJECT NUMBER 1119079
PROJECT NAME NYCDPR - Reconstruction of Michaelis-Bayswater Park
PROJECT LOCATION Queens, NY
SURFACE ELEVATION 9.33 feet
DATUM NAVD88
DATE STARTED 10/28/19
COMPLETED 10/28/19
COMPLETION DEPTH 44 feet
NO. SAMPLES 15
DIST. 13
UNDIST. 2
CORE 0
GROUND WATER LEVELS (ft. BG):
\[\text{\textcircled{\textbullet}}\] **AT TIME OF DRILLING** 8
\[\text{\textcircled{\textbullet}}\] **AFTER DRILLING**
FOREMAN Danny Ninevski
INSPECTOR William Butler
WEIGHT 140 pounds
DROP 30 inches
CHECKED BY Michael Mudalet, PE

<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>SAMPLE TYPE</th>
<th>NUMBER</th>
<th>RECOVERY (in.)</th>
<th>BLOW COUNTS (N VALUE)</th>
<th>GRAPHIC LOG</th>
<th>NYC BUILDING CODE</th>
<th>MATERIAL DESCRIPTION</th>
<th>ELEVATION</th>
<th>REMARKS</th>
</tr>
</thead>
</table>
| 0 | SS S-1 | 16 | 3-7-10-11 | (17) | Class 7 | S-1: Bottom 10" - Moist, tan f.-m. SAND, tr. f. Gravel, tr. Silt (Class 7) (FILL) | 8.83 | Mobilize to hole at 7:45 AM
| | SS S-2 | 20 | 8-9-10-10-10 | (19) | Class 7 | Moist, tan f.-m. SAND, tr. f. Gravel, tr. Silt (Class 7) (FILL) | | Start boring at 6:00 AM
| | SS S-3 | 18 | 3-4-6-5 | (10) | Class 7 | Moist, tan f.-m. SAND, tr. f. Gravel, tr. Silt (Class 7) (FILL) | | Take S-1
| | SS S-4 | 20 | 3-4-4-3 | (8) | Class 7 | Moist/wet, tan f.-c. SAND, It. f. Gravel, tr. Clay (Class 7) (FILL) | | Take S-2
| | SS S-5 | 10 | 2-2-1-1 | (3) | Class 7 | Wet, brown f.-c. SAND, tr. f. Gravel, tr. Silt (Class 7) (FILL) | | Auger casing to 4' below grade
| | SS S-6 | 18 | 1-1-1-1 | (2) | Class 7 | S-6A: Top 12" - Wet, brown f.-c. SAND, tr. f. Gravel, tr. Silt (Class 7) (FILL) | -1.87 | Take S-3
| | ST U-1 | 24 | WOH-WOH-1-1 | | Class 6 | S-6B: Bottom 6" - Wet, grey CLAY, It. f.-m. Sand, tr. Organics (Class 6) (CH) | | Take S-4
| | SS S-7 | 18 | WOH-WOH-1-1 | | Class 6 | Wet, grey CLAY, It. f. Sand, tr. Organics (Class 6) (CH) (P.P. = 0.25TSF) | | Auger casing to 6' below grade
| | SS S-8 | 10 | 1-1-2-1-1 | (3) | Class 6 | Wet, grey f.-c. SAND, tr. f. Gravel, tr. Silt (Class 6) (SP) | | Take S-5
| | | | | | | | | Take S-6
| | | | | | | | | Auger casing to 12' below grade
| | | | | | | | | Take U-1
| | | | | | | | | Take S-7
| | | | | | | | | Auger casing to 20' below grade
| | | | | | | | | Take S-8
| | | | | | | | | Auger casing to 25' below grade

(Continued Next Page)
<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>SAMPLE TYPE ROOMER</th>
<th>RECOVERY (RQU%)</th>
<th>BLOW COUNTS (B/C)</th>
<th>MATERIAL DESCRIPTION</th>
<th>ELEVATION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>SS S-9</td>
<td>16</td>
<td>2-2-3-5 (5)</td>
<td>Wet, brown c.-f. SAND, sm. f.-c. Gravel, tr. Silt (Class 6) (SP)</td>
<td>-19.17</td>
<td>Take S-9 Auger casing to 30' below grade</td>
</tr>
<tr>
<td>30</td>
<td>SS S-10</td>
<td>17</td>
<td>3-1-1-3 (2)</td>
<td>Wet, orange-brown f. SAND, sm. Silt, lt. Clay (Class 6) (SM)</td>
<td>-27.17</td>
<td>Take S-10 Auger casing to 33' below grade</td>
</tr>
<tr>
<td></td>
<td>SS S-11</td>
<td>16</td>
<td>2-3-4-7 (7)</td>
<td>Wet, grey f.-m. SAND, sm. Silt, tr. f. Gravel (shell fragments) (Class 6) (SM)</td>
<td>-32.67</td>
<td>Take S-11 Auger casing to 38' below grade</td>
</tr>
<tr>
<td>40</td>
<td>SS S-12</td>
<td>24</td>
<td>WOH-WOH-1-1</td>
<td>Wet, grey CLAY, tr. f. Sand (shell fragments) (Class 6) (CH) (P.P. = 0.5TSF)</td>
<td>-34.67</td>
<td>Take S-12 Auger casing to 40' below grade</td>
</tr>
<tr>
<td></td>
<td>ST U-2</td>
<td>22</td>
<td></td>
<td>Wet, grey CLAY, tr. f. Sand (shell fragments) (Class 6) (CH) (P.P. = 1.5TSF)</td>
<td></td>
<td>Take U-2</td>
</tr>
<tr>
<td></td>
<td>SS S-13</td>
<td>24</td>
<td>2-2-4-6 (6)</td>
<td>Wet, grey CLAY, tr. f. Sand (Class 4c) (CH) (P.P. = 1.5TSF)</td>
<td></td>
<td>Take S-13 End of boring at 11:30 AM to 44' below grade Backfill hole with cuttings</td>
</tr>
</tbody>
</table>

Bottom of borehole at 44.0 feet.
BORING NUMBER B-2

CLIENT NV5 New York
PROJECT NAME NYCDPR - Reconstruction of Michaelis-Bayswater Park
PROJECT LOCATION Queens, NY

DRILLING AGENCY MFS Construction, LLC
DRILLING EQUIPMENT Trailer Mounted CME-45B
SIZE AND TYPE OF BIT 3-1/4" I.D. Hollow Stem Auger (HSA)
CASING 3-1/4" I.D. HSA
CASING HAMMER Drop
SAMPLE 2" O.D. Split Spoon
SAMPLER HAMMER Auto
WEIGHT 140 pounds
DROP 30 inches
CHECKED BY Michael Mudalel, PE

<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>SAMPLE TYPE</th>
<th>RECOVERY % (RQD %)</th>
<th>BLOW COUNTS (N VALUE)</th>
<th>MATERIAL DESCRIPTION</th>
<th>ELEVATION</th>
<th>REMARKS</th>
</tr>
</thead>
</table>
| 0 | SS S-1 | 16 | 2-3-3-3-3 (6) | Top 8\(^\circ\) - Topsoil (Class 7) (FILL) | 7.78 | Mobilize to hole at 11:35 AM \
Start boring at 11:45 AM \
Take S-1 |
| 5 | SS S-2 | 13 | 3-3-3-3-3 (6) | S-1: Bottom 8\(^\circ\) - Moist, tan f.-m. SAND, tr. f. Gravel, tr. Silt (Class 7) (FILL) \
Moist, tan/brown f.-m. SAND, tr. Clay (Class 7) (FILL) | 8.00 | Take S-2 \
Auger casing to 4' below grade |
| 10 | SS S-4 | 2 | 1-2-12-14-14 (14) | Wet, dark brown c.-f. SAND, lt. Silt (rubber, glass, and ceramics fragments) (Class 7) (FILL) | 9.45 | Take S-4 \
Auger casing to 6' below grade |
| 15 | SS S-7 | 7 | WOH-WOH-1-1 | Wet, dark brown CLAY, sm. c.-f. Sand, tr. Organics (wood fragments) (Class 6) (CH) | 13.50 | Take S-5 |
| 20 | SS S-8 | 14 | 2-3-3-3-3-3-3 (6) | Wet, grey f. SAND, sm. Silt, lt. Clay (Class 6) (SM) | 18.50 | Take S-6 \
Auger casing to 15' below grade |
| | | | | Wet, brown f.-c. SAND, sm. Gravel, tr. Silt (Class 6) (SP) | 22.00 | Take S-7 \
Auger casing to 20' below grade |

Bottom of borehole at 22.0 feet.
BORING NUMBER B-3

CLIENT NY5 New York
PROJECT NAME NYCDPR - Reconstruction of Michaelis-Bayswater Park
PROJECT LOCATION Queens, NY
SURFACE ELEVATION 9.80 feet +/-
DATE ELEVATION 9.80 feet +/-
DATE STARTED 10/29/19
DATE COMPLETED 10/29/19
COMPLETION DEPTH 24 feet
ROCK DEPTH ----
NO. SAMPLES 9
DIST. 9
UNDIST. 0
CORE 0
GROUND WATER LEVELS (ft. BG):
UNTIL AT TIME OF DRILLING 7
V AT END OF DRILLING 6.5
AFTER DRILLING ----
FOREMAN Danny Ninevski
INSPECTOR William Butler
CHECKED BY Michael Mudale, PE

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Sample Type</th>
<th>Recovery (%)</th>
<th>Blow Count (N)</th>
<th>Graphic NYC Building Code</th>
<th>Material Description</th>
<th>Elevation</th>
<th>Remarks</th>
</tr>
</thead>
</table>
| 0 | SS S-1 | 14 | 2-3-4-6 (7) | | Moist, brown/orange f.-c. SAND, tr. f. Gravel, tr. Silt (Class 7) (FILL) | 0 | Mobilize to hole at 10:05 AM
Start boring at 10:10 AM
Take S-1 |
| 0 | SS S-2 | 12 | 4-4-4-2 (8) | | Moist, brown/black f.-c. SAND and f.-c. Gravel, lt. Silt (asphalt, glass, and ceramic fragments) (Class 7) (FILL) | 0 | Take S-2
Auger casing to 4' below grade |
| 5 | SS S-3 | 6 | WOH-1-1-1 (2) | | Moist, brown/black f.-c. SAND, lt. f. Gravel, lt. Silt (Class 7) (FILL) | 5 | Take S-3
Auger casing to 6' below grade |
| 10 | SS S-4 | 16 | 3-3-2-2 (5) | Class 7 | Wet, light brown f.-c. SAND, tr. Silt, tr. f. Gravel (Class 7) (FILL) | 10 | Take S-4
Auger casing to 8' below grade |
| 10 | SS S-5 | 12 | 1-1-1-2 (2) | Class 7 | Wet, brown f.-c. SAND, tr. Silt, tr. f. Gravel (Class 7) (FILL) | 10 | Take S-5
Auger casing to 15' below grade |
| 15 | SS S-6 | 12 | 4-3-2-2 (5) | Class 6 | S-6A: Top 8' - Wet, brown f.-c. SAND, lt. f. Gravel, tr. Silt (Class 7) (FILL)
S-6B: Bottom 4' - Wet, grey PEAT (Class 6) (SP) | 15 | Take S-6
Auger casing to 20' below grade |
| 20 | SS S-7 | 11 | 3-6-7-5 (13) | Class 3 | Wet, grey f. SAND, tr. Silt (Class 3b) (SP) | 20 | Take S-7
Auger casing to 20' below grade |
| 20 | SS S-8 | 18 | 1-1-2-2 (3) | Class 6 | S-8A: Top 9' - Wet, grey CLAY, tr. f. Sand (shell fragments) (Class 6) (CH) (P.P.=0.25TSF)
S-8B: Bottom 9' - Wet, brown PEAT (Class 6) (PT) (P.P.=0.25TSF) | 20 | Take S-8
End of boring at 11:40 AM to 24' below grade
Backfill hole with cuttings and holeplug |
| 24 | SS S-9 | 14 | 2-2-2-2 (4) | Class 6 | Wet, brown f.-c. SAND, lt. Silt, tr. Organics (Class 6) (SP-SM) | 24 | Take S-9
End of boring at 11:40 AM to 24' below grade
Backfill hole with cuttings and holeplug |

Bottom of borehole at 24.0 feet.
Boring Number B-4

Client: NV5 New York
MFS Project Number: 1119079
Drilling Agency: MFS Construction, LLC
Drilling Equipment: Trailer Mounted CME-45B
Size and Type of Bit: 3-1/4" I.D. Hollow Stem Auger (HSA)
Casing: 3-1/4" I.D. HSA
Casing Hammer: -
Sampler: 2" O.D. Split Spoon
Sampler Hammer: Auto
Weight: 140 pounds
Drop: 30 inches
Surface Elevation: 9.74 feet +/-
Datum: NAVD88
Date Started: 10/29/19
Completed: 10/29/19
Completion Depth: 24 feet
Rock Depth: -
No. Samples: 9
Dist.: 9
Undist.: 0
Core: 0
Ground Water Levels (ft. BG):
- **At Time of Drilling**: 7
- **At End of Drilling**: 6
- **After Drilling**: -
Foreman: Danny Ninevski
Inspector: William Butler
Checked By: Michael Mudalel, PE

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Sample Type</th>
<th>Recovery % (Rodi %)</th>
<th>Blow Counts (N Value)</th>
<th>Graphic Of NYC Building Code</th>
<th>Depth Below Surface (ft)</th>
<th>Material Description</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SS S-1</td>
<td>20</td>
<td>2-3-9-9</td>
<td>S: Topsoil (Class 7) (FILL)</td>
<td>9.24</td>
<td>S-1: Bottom 14" - Moist, brown/orange f.-c. SAND and Silt, lt. f. Gravel (glass and ceramic fragments) (Class 7) (FILL) Moist, tan f.-m. SAND, tr. Silt (Class 7) (FILL)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>SS S-2</td>
<td>16</td>
<td>7-6-7-6</td>
<td>S-2: Bottom 14" - Moist, brown/orange f.-c. SAND and Silt, lt. f. Gravel (glass and ceramic fragments) (Class 7) (FILL) Moist, tan f.-m. SAND, tr. Silt, tr. f. Gravel (Class 7) (FILL) Wet, brown f.-c. SAND, lt. f. Gravel, tr. Silt (Class 7) (FILL)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>SS S-3</td>
<td>13</td>
<td>2-3-4-4</td>
<td>Wet, grey f.-c. SAND, lt. f. Gravel, tr. Silt (Class 7) (FILL)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>SS S-4</td>
<td>16</td>
<td>3-3-3-3</td>
<td>S-6A: Top 16" - Wet, grey c.-f. SAND, lt. f. Gravel, tr. Clay (Class 7) (FILL)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>SS S-5</td>
<td>10</td>
<td>2-3-1-2</td>
<td>S-6B: Bottom 8" - Wet, grey SILT and f.-m. Sand, lt. Clay, tr. Organics (Class 6) (ML)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>SS S-7</td>
<td>18</td>
<td>WOH-1-2</td>
<td>S-7A: Top 10" - Wet, grey CLAY, tr. f. Sand (Class 6) (CH) (F.P. = 0.5TSF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>SS S-7</td>
<td>18</td>
<td>WOH-1-2</td>
<td>S-7B: Bottom 8" - Wet, grey f. SAND, lt. Clay (Class 6) (SC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>SS S-8</td>
<td>14</td>
<td>2-3-2-3</td>
<td>S-8A: Top 10" - Wet, grey f. SAND, tr. Silt (Class 6) (SP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>SS S-9</td>
<td>16</td>
<td>3-3-4-4</td>
<td>S-8B: Bottom 4" - Wet, brown PEAT (Class 6) (PT)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>SS S-9</td>
<td>16</td>
<td>3-3-4-4</td>
<td>S-9A: Top 10" - Wet, brown PEAT (Class 6) (PT)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bottom of borehole at 24.0 feet.
<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>SAMPLE TYPE NUMBER</th>
<th>RECOVERY (%)</th>
<th>BLOW COUNTS (N)</th>
<th>MATERIAL DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SS S-1</td>
<td>14</td>
<td>3-5-5-7 (10)</td>
<td>Top 4" - Topsoil (Class 7) (FILL)</td>
</tr>
<tr>
<td></td>
<td>SS S-2</td>
<td>16</td>
<td>4-5-6-5 (11)</td>
<td>S-1: Bottom 10" - Moist, tan f-m. SAND, sm. f. Gravel, tr. Silt (Class 7) (FILL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Moist, tan f-m. SAND, tr. f. Gravel, tr. Silt (Class 7) (FILL)</td>
</tr>
<tr>
<td></td>
<td>SS S-3</td>
<td>12</td>
<td>2-1-2-2 (3)</td>
<td>Moist, tan/brown f-c. SAND, it. Silt, lt. f. Gravel (asphalt, glass, and ceramic fragments) (Class 7) (FILL)</td>
</tr>
<tr>
<td></td>
<td>SS S-4</td>
<td>10</td>
<td>1-1-1-1 (2)</td>
<td>Wet, dark brown f-c. SAND, sm. f. Gravel, lt. Silt (Class 7) (FILL)</td>
</tr>
<tr>
<td></td>
<td>SS S-5</td>
<td>2</td>
<td>1-1-1-1 (2)</td>
<td>Wet, dark brown f-c. SAND, sm. f. Gravel, lt. Silt (Class 7) (FILL)</td>
</tr>
<tr>
<td>13.50</td>
<td></td>
<td></td>
<td></td>
<td>S-7A: Top 12" - Wet, grey f-c. SAND, tr. Silt (Class 6) (SP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S-7B: Middle 4" - Wet, grey CLAY, tr. f. Sand (Class 6) (CH)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bottom 4" - Wet, grey f-c. SAND, tr. Silt (Class 6) (SP)</td>
</tr>
<tr>
<td>20.50</td>
<td></td>
<td></td>
<td></td>
<td>Wet, brown f-m. SAND, lt. Silt, lt. Organics, tr. Clay, tr. f. Gravel (Class 6) (SM)</td>
</tr>
<tr>
<td>22.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Continued Next Page)
<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>SAMPLE TYPE NUMBER</th>
<th>RECOVERY (in)</th>
<th>BLOW COUNTS (N VALUE)</th>
<th>MATERIAL DESCRIPTION</th>
<th>ELEVATION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>SS S-9</td>
<td>11</td>
<td>3-6-11-13 (17)</td>
<td>Wet, brown f.-c. SAND, tr. f. Gravel, tr. Silt (Class 3b) (SP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Take S-9 Auger casing to 30' below grade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>SS S-10</td>
<td>16</td>
<td>6-5-7-5 (13)</td>
<td>S-10A: Top 12". Wet, grey c.-f. SAND, tr. f. Gravel, tr. Silt (Class 3b) (SP)</td>
<td>-21.35</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Take S-10 Auger casing to 35' below grade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>SS S-11</td>
<td>12</td>
<td>2-4-6-6 (10)</td>
<td>S-10B: Bottom 6". Wet, orange/brown f.-m. SAND and Silt (Class 3b) (SM)</td>
<td>-27.35</td>
<td></td>
</tr>
</tbody>
</table>

Bottom of borehole at 37.0 feet.

Backfill with cuttings and holeplug.
Boiling Number B-6

Client: NV5 New York

MFS Project Number: 1119079

Drilling Agency: MFS Construction, LLC

Drilling Equipment: Trailer Mounted CME-45B

Size and Type of Bit: 3-1/4" I.D. Hollow Stem Auger (HSA)

Casing: 3-1/4" I.D. HSA

Casing Hammer: ----

Weight: ---- Drop ----

Sampler: 2" O.D. Split Spoon

Sampler Hammer: Auto

Weight: 140 pounds Drop: 30 inches

Checked By: Michael Mudale, PE

Foreman: Danny Nievek

Inspector: William Butler

Surface Elevation: 8.94 feet

Datum: NAVD88

Date Started: 10/31/19

Completed: 10/31/19

Completion Depth: 20 feet

Rock Depth: ----

No. Samples: 8 Dist: 8 Undist: 0 Core: 0

Ground Water Levels (ft. BG): ----

V At End of Drilling: 5 After Drilling: ----

Depth (ft.)

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Sample Type</th>
<th>Recovery [%]</th>
<th>Blow Counts</th>
<th>Graphic Log</th>
<th>Material Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SS S-1</td>
<td>14</td>
<td>1-3-7-4</td>
<td>Class 7</td>
<td>Top 8" - Topsoil (Class 7) (FILL) 8.27</td>
</tr>
<tr>
<td>5</td>
<td>SS S-2</td>
<td>18</td>
<td>3-6-6-7</td>
<td>Class 6</td>
<td>S-1: Bottom 6" - Moist, dark brown f.-c. SAND, sm. f.-c. Gravel, lt. Silt (asphalt and glass fragments) (Class 7) (FILL)</td>
</tr>
<tr>
<td></td>
<td>SS S-3</td>
<td>12</td>
<td>2-3-4-3</td>
<td>Class 6</td>
<td>S-2A: Top 7" - Moist, dark brown f.-c. SAND, sm. f.-c. Gravel, lt. Silt (asphalt and glass fragments) (Class 7) (FILL)</td>
</tr>
<tr>
<td></td>
<td>SS S-4</td>
<td>16</td>
<td>2-2-2-3</td>
<td>Class 6</td>
<td>S-2B: Bottom 11" - Moist, tan f.-m. SAND, tr. f. Gravel, tr. Silt (Class 7) (FILL)</td>
</tr>
<tr>
<td>10</td>
<td>SS S-5</td>
<td>10</td>
<td>3-4-2-2</td>
<td>Class 6</td>
<td>Wet, tan/grey f.-m. SAND, tr. Clay, tr. Organics, tr. f. Gravel (clay lump) (Class 6) (SP-SC) 8.94</td>
</tr>
<tr>
<td>15</td>
<td>SS S-6</td>
<td>20</td>
<td>2-2-2-2</td>
<td>Class 6</td>
<td>Wet, tan/grey f.-m. SAND, tr. Clay (clay lumps) (Class 6) (SP-SC) 10.00</td>
</tr>
<tr>
<td>20</td>
<td>SS S-7</td>
<td>12</td>
<td>4-3-4-6</td>
<td>Class 6</td>
<td>S-7A: Top 9" - Wet, brown PEAT (Class 6) (PT) 16.00</td>
</tr>
<tr>
<td></td>
<td>SS S-8</td>
<td>18</td>
<td></td>
<td>Class 6</td>
<td>S-7B: Bottom 3" - Wet, brown f.-m. SAND, lt. Silt (Class 6) (SM) 17.50</td>
</tr>
</tbody>
</table>

Wet, grey f.-c. SAND, lt. f. Gravel, tr. Silt (Class 6) (SP) 20.00

Remarks:
- Mobilize to hole at 8:10 AM
- Start boring at 8:40 AM
- Take S-1
- Take S-2
- Auger casing to 4" below grade
- Take S-3
- Take S-4
- Auger casing to 6" below grade
- Take S-5
- Take S-6
- Auger casing to 15" below grade
- Take S-7
- Auger casing to 18" below grade
- Take S-8
- Finish boring at 9:50 AM to 20' below grade
- Backfill hole with soil cuttings and holeplug

Bottom of borehole at 20.0 feet.
<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>SAMPLE TYPE</th>
<th>RECOVERY %</th>
<th>BLOW COUNTS (N VALUE)</th>
<th>GRAPHIC LOG</th>
<th>NYC BUILDING CODE</th>
<th>DEPTH BELOW SURFACE (ft)</th>
<th>MATERIAL DESCRIPTION</th>
<th>ELEVATION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SS S-1</td>
<td>18</td>
<td>2-3-3-5 (6)</td>
<td>Class 7</td>
<td></td>
<td>0.33</td>
<td>Top 4" - Topsoil (Class 7) (FILL)</td>
<td>8.25</td>
<td>Mobilize to hole at 9:55 AM</td>
</tr>
<tr>
<td></td>
<td>SS S-2</td>
<td>16</td>
<td>4-4-5-3 (9)</td>
<td>Class 7</td>
<td></td>
<td>4.00</td>
<td>S-1 Bottom 14" - Moist, tan m-f. SAND, lt. f. Gravel, tr. Silt (Class 7) (FILL)</td>
<td>4.56</td>
<td>Start boring at 10:05 AM</td>
</tr>
<tr>
<td>5</td>
<td>SS S-3</td>
<td>19</td>
<td>2-3-2-4 (5)</td>
<td>Class 6</td>
<td></td>
<td>6.00</td>
<td>Wet, brown/grey f-m. SAND, tr. Clay, tr. f. Gravel (clay lumps) (Class 6) (SP-SC)</td>
<td>0.58</td>
<td>Take S-1</td>
</tr>
<tr>
<td></td>
<td>SS S-4</td>
<td>20</td>
<td>2-4-2-4 (6)</td>
<td>Class 6</td>
<td></td>
<td>10.00</td>
<td>Wet, grey f-m. SAND, lt. Clay, tr. f. Gravel (clay lumps) (Class 6) (SP-SC)</td>
<td>-1.42</td>
<td>Take S-2</td>
</tr>
<tr>
<td>10</td>
<td>SS S-5</td>
<td>11</td>
<td>1-1-1-1 (2)</td>
<td>Class 6</td>
<td></td>
<td>11.00</td>
<td>Wet, grey f-m. SAND, lt. Clay, tr. f. Gravel (clay lumps) (Class 6) (SP-SC)</td>
<td>-2.42</td>
<td>Auger casing to 12' below grade</td>
</tr>
<tr>
<td></td>
<td>SS S-6</td>
<td>20</td>
<td>WOH-WOH-1-1</td>
<td>Class 6</td>
<td></td>
<td>15.00</td>
<td>S-6A: Top 8" - Wet, grey c-f. SAND, tr. Clay, tr. f. Gravel (clay lumps) (Class 6) (SP-SC)</td>
<td>-4.42</td>
<td>Take U-1</td>
</tr>
<tr>
<td>15</td>
<td>ST U-1</td>
<td>24</td>
<td></td>
<td>Class 6</td>
<td></td>
<td>15.00</td>
<td>S-6B: Bottom 12" - Wet, grey CLAY, tr. f-c. Sand (shell fragments) (Class 6) (CH)</td>
<td>-6.42</td>
<td>Auger casing to 18' below grade</td>
</tr>
<tr>
<td></td>
<td>SS S-7</td>
<td>16</td>
<td>1-1-2-3 (3)</td>
<td>Class 3</td>
<td></td>
<td>20.00</td>
<td>Wet, orange-brown f-c. SAND, tr. Silt, tr. f. Gravel (Class 6b) (SP-SM)</td>
<td>-11.42</td>
<td>Take S-8</td>
</tr>
<tr>
<td></td>
<td>SS S-8</td>
<td>14</td>
<td>2-6-11-10 (17)</td>
<td></td>
<td></td>
<td></td>
<td>Bottom of borehole at 20.0 feet.</td>
<td></td>
<td>End of boring at 11:20 AM to 20' below grade</td>
</tr>
</tbody>
</table>

In-situ laboratory analyses were completed by FFL Laboratories, Inc. (New York, NY) and are on file with MFS Engineers & Surveyors.
BORING NUMBER B-8

PROJECT NAME NYCDPR - Reconstruction of Michaelcis-Bayswater Park
PROJECT LOCATION Queens, NY

CLIENT NV5 New York
MFS PROJECT NUMBER 1119079

DRILLING AGENCY MFS Construction, LLC
SURFACE ELEVATION 7.15 feet

DRILLING EQUIPMENT Trailer Mounted CME-45B
DATE STARTED 10/31/19
COMPLETION DEPTH 20 feet
COMPLETED 10/31/19
NO. SAMPLES 8
DIST. 8
UNDIST. 0
GROUND WATER LEVELS (ft. BG):
ROCK DEPTH ----
CORE 0
AT TIME OF DRILLING 4.5
FOREMAN Danny Ninovski
INSPECTOR William Butler

WEIGHT 140 pounds
DROP 30 inches
CHECKED BY Michael Mufleal, PE

<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>SAMPLE TYPE NUMBER</th>
<th>RECOVERY %</th>
<th>BLOW COUNTS (N VALUES)</th>
<th>GRAPHIC LOG</th>
<th>MATERIAL DESCRIPTION</th>
<th>ELEVATION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SS S-1</td>
<td>16</td>
<td>1-4-6-7 (10)</td>
<td>Class 7</td>
<td>Top 4" - Topsoil (Class 7) (FILL)</td>
<td>8.82</td>
<td>Mobilize to hole at 11:25 AM</td>
</tr>
<tr>
<td>2</td>
<td>SS S-2</td>
<td>14</td>
<td>2-3-5-5 (8)</td>
<td>Class 7</td>
<td>S-1: Bottom 12" - Moist, orange-brown f.-c. SAND, it. f. Gravel, tr. Silt (Class 7) (FILL)</td>
<td>6.00</td>
<td>Start boring at 11:30 AM</td>
</tr>
<tr>
<td>2</td>
<td>SS S-3</td>
<td>1</td>
<td>1-2-1-2 (3)</td>
<td>Class 7</td>
<td>Moist, brown f.-c. SAND and f.-c. Gravel, it. Silt (asphalt, glass, and ceramics fragments) (Class 7) (FILL)</td>
<td>1.15</td>
<td>Take S-1</td>
</tr>
<tr>
<td>10</td>
<td>SS S-4</td>
<td>13</td>
<td>1-1-1-1 (2)</td>
<td>Class 6</td>
<td>S-4A: Top 5" - Wet, grey f.-m. SAND, it. Silt, tr. f. Gravel (Class 6) (SM)</td>
<td>0.15</td>
<td>Auger casing to 4' below grade</td>
</tr>
<tr>
<td>10</td>
<td>SS S-5</td>
<td>11</td>
<td>1-1-WOH-1</td>
<td>Class 6</td>
<td>S-4B: Bottom 8" - Wet, grey ORGANIC CLAY, tr. f. Sand (Class 6) (OH) (P. P. =0.5TSF)</td>
<td>-0.85</td>
<td>Take S-3</td>
</tr>
<tr>
<td>10</td>
<td>SS S-6</td>
<td>4</td>
<td>WOH- WOH- WOH-2</td>
<td>Class 6</td>
<td>Wet, grey CLAY, tr. Organics, tr. f. Sand (Class 6) (CH) (P. P. =0.156TSF)</td>
<td>-5.35</td>
<td>Take S-4</td>
</tr>
<tr>
<td>15</td>
<td>SS S-7</td>
<td>11</td>
<td>3-3-3-4 (6)</td>
<td>Class 6</td>
<td>Wet, grey f.-m. SAND, tr. Silt (Class 6) (SP)</td>
<td>-10.35</td>
<td>Auger casing to 6' below grade</td>
</tr>
<tr>
<td>20</td>
<td>SS S-8</td>
<td>15</td>
<td>4-5-8-7 (13)</td>
<td>Class 3</td>
<td>Wet, grey f.-m. SAND, tr. Silt (Class 3b) (SP)</td>
<td>-12.85</td>
<td>Take S-5</td>
</tr>
</tbody>
</table>

Bottom of borehole at 20.0 feet.

Pocket Penrometer reading taken with adapter foot attachment in the field. Values shown have been corrected to an equivalent 1/4-inch diameter piston.
<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>SAMPLE TYPE</th>
<th>Recovery (%</th>
<th>Blow Counts (N)</th>
<th>GRAPHIC LOG</th>
<th>MATERIAL DESCRIPTION</th>
<th>ELEVATION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SS S-1</td>
<td>18</td>
<td>1-3-5-5-5 (8)</td>
<td>Class 7</td>
<td>Top 8" - Topsoil (Class 7) (FILL)</td>
<td>19.47</td>
<td>Mobilize to hole at 8:05 AM</td>
</tr>
<tr>
<td></td>
<td>SS S-2</td>
<td>14</td>
<td>5-7-9-7-7 (16)</td>
<td>Class 3</td>
<td>Moist, brown/tan f.-c. SAND, sm. Silt, tr. f. Gravel, tr. Silt (Class 3b) (SW-SM)</td>
<td>9.14</td>
<td>Start boring at 8:15 AM</td>
</tr>
<tr>
<td></td>
<td>SS S-3</td>
<td>11</td>
<td>3-5-7-11 (12)</td>
<td>Class 7</td>
<td>S-1: Bottom 10" - Moist, brown f.-c. SAND, sm. Silt, tr. f. Gravel (Class 7) (FILL)</td>
<td>7.14</td>
<td>Take S-1</td>
</tr>
<tr>
<td></td>
<td>SS S-4</td>
<td>13</td>
<td>17-14-12-22 (28)</td>
<td>Class 3</td>
<td>Moist, tan f.-c. SAND, tr. f. Gravel, tr. Silt (Class 3b) (SP)</td>
<td></td>
<td>Take S-2</td>
</tr>
<tr>
<td></td>
<td>SS S-5</td>
<td>14</td>
<td>6-19-21-22 (40)</td>
<td>Class 3</td>
<td>Moist/wet, tan f.-c. SAND, it. f. Gravel, tr. Silt (Class 3a) (SP)</td>
<td></td>
<td>Take S-3</td>
</tr>
<tr>
<td></td>
<td>SS S-6</td>
<td>20</td>
<td>14-18-22-23-23</td>
<td>Class 3</td>
<td>Wet, tan f.-c. SAND, lt. f.-c. Gravel, tr. Silt (Class 3a) (SP)</td>
<td></td>
<td>Take S-4</td>
</tr>
<tr>
<td>15</td>
<td>SS S-7</td>
<td>18</td>
<td>15-27-42-60-60</td>
<td>Class 3</td>
<td>Wet, tan f.-c. SAND, sm. c.-f. Gravel, tr. Silt (Class 3a) (SP)</td>
<td></td>
<td>Take S-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Take S-6</td>
</tr>
<tr>
<td>20</td>
<td>SS S-8</td>
<td>12</td>
<td>4-9-13-21 (22)</td>
<td>Class 3</td>
<td>Wet, tan, f.-c. SAND, lt. f. Gravel, tr. Silt (Class 3b) (SP)</td>
<td></td>
<td>Take S-7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Take S-8</td>
</tr>
</tbody>
</table>

(Continued Next Page)
<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Sample Type</th>
<th>Recovery (% ROC%)</th>
<th>Blow Counts (blows/16 inches N-value)</th>
<th>Graphic Log</th>
<th>NYC Building Code</th>
<th>Material Description</th>
<th>Remarks</th>
</tr>
</thead>
</table>
| 25 | SS S-9 | 24 | 5-5-11-18 (16) | Class 3 | | Wet, tan f.-c. SAND, tr. Silt, tr. f. Gravel (Class 3b) (SP) | Take S-9
Auger casing to 30' below grade |
| 30 | SS S-10 | 20 | 2-2-3-3 (5) | Class 6 | | Wet, brown f.-m. SAND, sm. Silt, lt. Clay (Class 6) (SM) | Take S-10
Auger casing to 33' below grade |
| 35 | ST U-1 | 0 | | No Recovery | | Wet, grey f.-c. SAND, lt. Silt (shell fragments) (Class 3b) (SP-SM) | Take S-11
Auger casing to 35' below grade |

Bottom of borehole at 37.0 feet.
<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Sample Type Number</th>
<th>Recovery (in)</th>
<th>Blow Counts (N Value)</th>
<th>Graphic Log</th>
<th>NYC Building Code</th>
<th>Material Description</th>
<th>Elevation</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SS S-1</td>
<td>16</td>
<td>1-2-3-4 (5)</td>
<td>Class 7</td>
<td>0.83</td>
<td>Top 10" - Topsoil (Class 7) (FILL)</td>
<td>13.76</td>
<td>Mobilize to hole at 11:05 AM</td>
</tr>
<tr>
<td>5</td>
<td>SS S-2</td>
<td>15</td>
<td>3-5-10-9 (15)</td>
<td>Class 3</td>
<td>6.00</td>
<td>Moist, orange-brown f.-m. SAND, lt. Silt, tr. f. Gravel (Class 3b) (SP-SM)</td>
<td>8.59</td>
<td>Take S-3</td>
</tr>
<tr>
<td>10</td>
<td>SS S-3</td>
<td>12</td>
<td>3-6-8-11 (14)</td>
<td>Class 3</td>
<td></td>
<td>Moist, orange-brown f.-c. SAND, lt. Silt, tr. f. Gravel (Class 3b) (SP-SM)</td>
<td></td>
<td>Take S-6</td>
</tr>
<tr>
<td>15</td>
<td>SS S-4</td>
<td>14</td>
<td>14-13-21-23 (34)</td>
<td>Class 3</td>
<td></td>
<td>Moist, tan f.-c. SAND, tr. f. Gravel, tr. Silt (Class 3a) (SP)</td>
<td></td>
<td>Take S-7</td>
</tr>
<tr>
<td>20</td>
<td>SS S-5</td>
<td>16</td>
<td>8-16-26-27 (42)</td>
<td>Class 3</td>
<td></td>
<td>Moist, tan f.-c. SAND, tr. f. Gravel, tr. Silt (Class 3a) (SP)</td>
<td></td>
<td>Take S-8</td>
</tr>
<tr>
<td>20</td>
<td>SS S-6</td>
<td>18</td>
<td>22-24-25-29 (49)</td>
<td>Class 3</td>
<td></td>
<td>Wet, tan f.-c. SAND, lt. f.-c. Gravel, tr. Silt (Class 3a) (SP)</td>
<td></td>
<td>End of boring at 12:35 PM to 20' below grade</td>
</tr>
<tr>
<td>20</td>
<td>SS S-7</td>
<td>12</td>
<td>16-19-18-17 (37)</td>
<td>Class 3</td>
<td></td>
<td>Wet, tan f.-c. SAND, lt. f.-c. Gravel, tr. Silt (Class 3a) (SP)</td>
<td></td>
<td>Backfill hole with soil cuttings and holeplug</td>
</tr>
<tr>
<td>20</td>
<td>SS S-8</td>
<td>16</td>
<td>6-14-21-22 (35)</td>
<td>Class 3</td>
<td></td>
<td>Wet, tan f.-c. SAND, lt. f.-c. Gravel, tr. Silt (Class 3a) (SP)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bottom of borehole at 20.0 feet.
<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>SAMPLE TYPE NUMBER</th>
<th>RECOVERY (m)</th>
<th>BLOW COUNTS (6 INCHES)</th>
<th>GRAPHIC LOG</th>
<th>MATERIAL DESCRIPTION</th>
<th>ELEVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SS S-1</td>
<td>12</td>
<td>2-3-5-6 (8)</td>
<td>Class 7</td>
<td>Material 1</td>
<td>10.00</td>
</tr>
<tr>
<td>5</td>
<td>SS S-2</td>
<td>13</td>
<td>6-7-6-5 (13)</td>
<td>Class 3</td>
<td>Material 2</td>
<td>6.00</td>
</tr>
<tr>
<td>10</td>
<td>SS S-3</td>
<td>11</td>
<td>2-5-5-6 (10)</td>
<td>Class 3</td>
<td>Material 3</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>SS S-4</td>
<td>15</td>
<td>6-6-8-9 (14)</td>
<td>Class 3</td>
<td>Material 4</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>SS S-5</td>
<td>14</td>
<td>3-6-8-14 (14)</td>
<td>Class 3</td>
<td>Material 5</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>SS S-6</td>
<td>15</td>
<td>13-14-16-20 (30)</td>
<td>Class 3</td>
<td>Material 6</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>SS S-7</td>
<td>18</td>
<td>14-22-30-41 (52)</td>
<td>Class 3</td>
<td>Material 7</td>
<td>18.50</td>
</tr>
<tr>
<td>20</td>
<td>SS S-8</td>
<td>12</td>
<td>5-10-16-13 (28)</td>
<td>Class 3</td>
<td>Material 8</td>
<td>23.50</td>
</tr>
</tbody>
</table>

Remarks:
- Mobilize hole at 7:50 AM.
- Start boring at 8:00 AM.
- Take S-1.
- Auger casing to 4' below grade.
- Take S-2.
- Auger casing to 8' below grade.
- Take S-3.
- Auger casing to 15' below grade.
- Take S-4.
- Auger casing to 20' below grade.
- Take S-5.
- Auger casing to 25' below grade.
- Take S-6.
<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Sample Type</th>
<th>Recovery (%)</th>
<th>BLOW COUNTS (16 INCHES N VALUE)</th>
<th>MATERIAL DESCRIPTION</th>
<th>Elevation</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>SS S-9</td>
<td>20</td>
<td>8-7-14-21 (21)</td>
<td>Wet, tan f.-c. SAND, lt. f. Gravel, tr. Silt (Class 3b) (SP)</td>
<td></td>
<td>Take S-9 Auger casing to 30' below grade</td>
</tr>
<tr>
<td>30</td>
<td>SS S-10</td>
<td>16</td>
<td>10-8-7-5 (15)</td>
<td>Wet, light brown f.-c. SAND, tr. f. Gravel, tr. Silt (Class 3b) (SP)</td>
<td>33.50</td>
<td>Take S-10 Auger casing to 35' below grade</td>
</tr>
<tr>
<td>35</td>
<td>SS S-11</td>
<td>19</td>
<td>6-6-6-7 (12)</td>
<td>Wet, grey f.-r. SAND, lt. Silt, tr. f. Gravel (shell fragments) (Class 3b) (SM)</td>
<td>37.00</td>
<td>Take S-11 End of boring at 10:45 AM to 37’ below grade Backfill hole with cuttings</td>
</tr>
</tbody>
</table>

Bottom of borehole at 37.0 feet.
BORING NUMBER B-13A

CLIENT: NV5 New York
MFS PROJECT NUMBER: 1119079

PROJECT NAME: NYCDPR - Reconstruction of Michaelis-Bayswater Park
PROJECT LOCATION: Queens, NY

SURFACE ELEVATION: 9.62 feet +/-
DATE STARTED: 11/5/19
COMPLETED: 11/5/19

DATUM: NAVD88
COMPLETION DEPTH: 3 feet
ROCK DEPTH: ----

NO. SAMPLES: 2
DISTRIBUTION: 2
UNDISTurbed: 0
CORE: 0

GROUND WATER LEVELS (ft. BG):
AT TIME OF DRILLING: ----
AT END OF DRILLING: ----
AFTER DRILLING: ----

WEIGHT: 140 pounds
DROP: 30 inches
FOREMAN: Danny Ninevski
INSPECTOR: William Butler

SAMPLER: 2" O.D. Split Spoon
SAMPLER HAMMER: Auto
CHECKED BY: Michael Mudalet, PE

<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>SAMPLE TYPE NUMBER</th>
<th>RECOVERY (in) (RSD %)</th>
<th>BLOW COUNTS (N VALUE)</th>
<th>GRAPHIC LOG</th>
<th>NYC BUILDING CODE</th>
<th>DEPTH BELOW SURFACE (ft)</th>
<th>MATERIAL DESCRIPTION</th>
<th>ELEVATION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SS S-1</td>
<td>12</td>
<td>1-2-2-6</td>
<td>Class 7</td>
<td>N/A</td>
<td>0.50</td>
<td>Top 6" - Topsoil (Class 7) (FILL)</td>
<td>9.12</td>
<td>Mobilize to hole at 7:30 AM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Class 7</td>
<td>N/A</td>
<td></td>
<td>Bottom 5" - Moist, brown f.-m. SAND, tr. f. Gravel, tr. Silt (Class 7) (FILL)</td>
<td></td>
<td>Start boring at 7:40 AM</td>
</tr>
<tr>
<td></td>
<td>SS S-2</td>
<td>10</td>
<td>7-3-15/0"</td>
<td>Class 7</td>
<td>N/A</td>
<td>3.00</td>
<td>Moist, brown f.-m. SAND, tr. f. Gravel, tr. Silt (glass fragments) (Class 7) (FILL)</td>
<td>6.62</td>
<td>Take S-1</td>
</tr>
</tbody>
</table>

Bottom of borehole at 3.0 feet.

Take S-2. Refusal at 3' below grade (Split spoon bouncing)
Attempt to auger casing to 4' below grade
Practical auger refusal at 3' below grade. Re-attempt boring at B-13B
End of boring at 8:00 AM to 3' below grade
Backfill hole with cuttings
<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>SAMPLE TYPE NUMBER</th>
<th>RECOVERY (in) (Rd%)</th>
<th>BLOW COUNTS 1/8 INCHES (N VALUE)</th>
<th>GRAPHIC LOG</th>
<th>NYC BUILDING CODE</th>
<th>DEPTH BELOW SURFACE (ft)</th>
<th>MATERIAL DESCRIPTION</th>
<th>ELEVATION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>See Boring B-13A</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Bottom of borehole at 4.0 feet.

Mobilize to hole at 8:10 AM
Start boring at 8:20 AM
Auger casing to 4' below grade
Hard drilling at approximately 3' below grade
Concrete fragments in drill cuttings
Advanced HSA to 4' below grade
Knuckle on drill rig drive shaft broke
End of boring at 9:20 AM to 4' below grade
Backfill hole with cuttings
BOARING NUMBER B-13C

CLIENT NV5 New York
MFS PROJECT NUMBER 1119079
PROJECT NAME NYCDPR - Reconstruction of Michaelis-Bayswater Park
PROJECT LOCATION Queens, NY
DRILLING AGENCY MFS Construction, LLC
DRILLING EQUIPMENT Trailer Mounted CME-45B
SURFACE ELEVATION 9.70 feet +/-
COMPLETION DEPTH 20 feet
DATE STARTED 11/7/19
DATUM NAVD88
COMPLETED 11/7/19
NO. SAMPLES 6
ROCK DEPTH ----
DIST. 6
UNDIST. 0
CORE 0
GROUND WATER LEVELS (ft. BG): 7.5
AT TIME OF DRILLING 4.67
DROP AFTER DRILLING ----

WEIGHT 140 pounds
SAMPLE SIZE 30 inches
FOREMAN Danny Ninevski
WEIGHT DROP 30 inches
INSPECTOR William Butler

<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>SAMPLE NO.</th>
<th>RECOVERY (%)</th>
<th>BLOW COUNTS / 6 INCHES</th>
<th>MATERIAL DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SS S-1</td>
<td>3-3-2-2-2</td>
<td>0.33 4" Asphalt</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>SS S-2</td>
<td>3-4-4-3-3</td>
<td>5.70 4" Asphalt</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>SS S-3</td>
<td>1-1-6-9-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>SS S-4</td>
<td>6-7-8-10-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>SS S-5</td>
<td>6-8-13-14-21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>SS S-6</td>
<td>4-8-7-9-15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
- Mobilize to hole at 9:20 AM
- Start boring at 9:30 AM
- Advance split spoon through asphalt
- Auger casing to 4' below grade
- See Borings B-13A and B-13B
- Moist, orange-brown/tan f.-m. SAND, tr. Silt, tr. f. Gravel (Class 6) (SP-SM)
- Wet, orange-brown f.-m. SAND, tr. Silt, tr. f. Gravel (Class 3b) (SP-SM)
- Wet, orange-brown f.-m. SAND, tr. Silt, tr. f. Gravel (Class 3b) (SP-SM)
- Moist/wet, orange-brown f.-m. SAND, tr. Silt, tr. f. Gravel (Class 6) (SP-SM)
- Wet, orange-brown f.-m. SAND, tr. Silt, tr. f. Gravel (Class 3b) (SP-SM)
- Wet, orange-brown f.-m. SAND, tr. Silt, tr. f. Gravel (Class 3b) (SP-SM)
- Wet, orange-brown f.-m. SAND, tr. Silt, tr. f. Gravel (Class 3b) (SP-SM)
- Auger casing to 15' below grade
- Take S-5
- Auger casing to 18' below grade
- Take S-6
- End of boring at 10:30 AM to 20' below grade
- Backfill hole with soil cuttings and holeplug. Patch to grade with Ace-crete asphalt patch

Bottom of borehole at 20.0 feet.
<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>SAMPLE TYPE NUMBER</th>
<th>RECOVERY (R) (R%</th>
<th>BLOW COUNTS</th>
<th>GRAPHIC LOG</th>
<th>MATERIAL DESCRIPTION</th>
<th>ELEVATION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SS S-1</td>
<td>13</td>
<td>7-9-16-10</td>
<td>Class 7</td>
<td>Moist, brown/grey c.-f. GRAVEL and f.-c. Sand, lt. Silt (Class 7) (FILL)</td>
<td>4.00</td>
<td>Mobilize to hole at 7:55 AM</td>
</tr>
<tr>
<td></td>
<td>SS S-2</td>
<td>10</td>
<td>31-6-12-22</td>
<td>Class 7</td>
<td>Moist/wet, brown/grey f.-c. SAND, sm. f. Gravel, tr. Silt, tr. Clay (clay lump) (Class 7) (FILL)</td>
<td>4.06</td>
<td>Start boring at 8:10 AM</td>
</tr>
<tr>
<td>5</td>
<td>SS S-3</td>
<td>14</td>
<td>3-1-WOH</td>
<td>Class 6</td>
<td>Wet, grey/brown PEAT, lt. f. Sand (Class 6) (PT)</td>
<td>6.00</td>
<td>Take S-1</td>
</tr>
<tr>
<td></td>
<td>SS S-4</td>
<td>10</td>
<td>WOH-3-3-5</td>
<td>Class 6</td>
<td>Wet, grey f.-c. SAND, tr. Clay, tr. f. Gravel (Class 6) (SP-SC)</td>
<td>6.00</td>
<td>Auger casing to 6' below grade</td>
</tr>
<tr>
<td></td>
<td>SS S-5</td>
<td>19</td>
<td>WOH-1-1-1</td>
<td>Class 6</td>
<td>Wet, grey f.-m. SAND, tr. Silt (Class 6) (SP)</td>
<td>11.25</td>
<td>Take S-2</td>
</tr>
<tr>
<td>10</td>
<td>SS S-6</td>
<td>21</td>
<td>WOH-1-1-1</td>
<td>Class 6</td>
<td>S-6A: Top 14" - Wet, grey f.-m. SAND, tr. Silt (Class 6) (SP)</td>
<td>11.25</td>
<td>Auger casing to 12' below grade</td>
</tr>
<tr>
<td></td>
<td>ST U-1</td>
<td>0</td>
<td></td>
<td>Class 6</td>
<td>No Recovery</td>
<td>-9.04</td>
<td>Take U-1</td>
</tr>
<tr>
<td>15</td>
<td>SS S-7</td>
<td>12</td>
<td>1-1-1-WOH</td>
<td>Class 6</td>
<td>Wet, grey f.-m. SAND, tr. Silt, tr. Clay (clay lump) (Class 6) (SP-SM)</td>
<td>20.00</td>
<td>Auger casing to 18' below grade</td>
</tr>
<tr>
<td></td>
<td>SS S-8</td>
<td>16</td>
<td>2-1-1-2</td>
<td>Class 6</td>
<td>Wet, grey/brown f.-m. SAND, tr. Silt, tr. Clay, tr. Organics, tr. f. Gravel (clay lump) (Class 6) (SP-SM)</td>
<td>20.00</td>
<td>End of boring at 9:30 AM to 20' below grade</td>
</tr>
</tbody>
</table>

Bottom of borehole at 20.0 feet.
<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Sample Type</th>
<th>Recovery (%)</th>
<th>Blow Counts</th>
<th>Graphic Log</th>
<th>Material Description</th>
<th>Elevation</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SS S-1</td>
<td>14</td>
<td>2-3-3-3</td>
<td>Class 7</td>
<td>Top 7" - Topsoil (Class 7) (FILL)</td>
<td>5.72</td>
<td>Mobilize to hole at 9:35 AM</td>
</tr>
<tr>
<td></td>
<td>SS S-2</td>
<td>17</td>
<td>3-4-5-4</td>
<td>Class 7</td>
<td>S-1: Bottom 7" - Moist, brown f.-c. SAND, tr. f. Gravel (Class 7) (FILL)</td>
<td></td>
<td>Start boring at 9:40 AM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Moist, tari f.-m. SAND, tr. f. Gravel, tr. Silt (Class 7) (FILL)</td>
<td></td>
<td>Take S-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wet, orange-brown f.-c. SAND, tr. f. Gravel, tr. Silt (Class 7) (FILL)</td>
<td></td>
<td>Take S-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wet, brown/orange-brown f.-c. SAND, tr. f. Gravel, tr. Silt (Class 7) (FILL)</td>
<td></td>
<td>Auger casing to 4' below grade</td>
</tr>
<tr>
<td>5</td>
<td>SS S-3</td>
<td>16</td>
<td>3-4-3-3</td>
<td>Class 7</td>
<td>S-5A: Top 8" - Wet, grey f.-m. SAND, it. Clay, tr. Organics (clay lumps) (Class 6) (SP-SC)</td>
<td>-1.70</td>
<td>Take S-3</td>
</tr>
<tr>
<td></td>
<td>SS S-4</td>
<td>24</td>
<td>2-3-3-3</td>
<td>Class 6</td>
<td>S-5B: Bottom 4" - Wet, brown PEAT (Class 6) (PT)</td>
<td>-3.70</td>
<td>Auger casing to 8' below grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wet, grey ORGANIC CLAY, tr. f. Sand (Class 6) (OH)</td>
<td></td>
<td>Take S-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wet, grey ORGANIC CLAY, tr. f. Sand (Class 6) (OH) (P.P.=0.25TSF)</td>
<td></td>
<td>Auger casing to 10' below grade</td>
</tr>
<tr>
<td>10</td>
<td>ST U-1</td>
<td>24</td>
<td>1-2-1-1</td>
<td>Class 6</td>
<td>Wet, grey CLAY, tr. f. Sand (shell fragments) (Class 6) (CH)</td>
<td>-7.70</td>
<td>Take S-5</td>
</tr>
<tr>
<td></td>
<td>SS S-5</td>
<td>16</td>
<td>1-1-1-1</td>
<td>Class 6</td>
<td>Wet, grey CLAY, tr. f. Sand (Class 6) (CH) (P.P.=0.25TSF)</td>
<td>-18.20</td>
<td>Auger casing to 18' below grade</td>
</tr>
<tr>
<td>15</td>
<td>SS S-6</td>
<td>16</td>
<td>1-1-2-1</td>
<td>Class 6</td>
<td>Wet, grey CLAY, tr. f. Sand (shell fragments) (Class 6) (CH)</td>
<td></td>
<td>Take S-6</td>
</tr>
<tr>
<td></td>
<td>SS S-7</td>
<td>12</td>
<td>1-0-1-WOH</td>
<td>Class 6</td>
<td>Wet, grey CLAY, tr. f. Sand (Class 6) (CH) (P.P.=0.25TSF)</td>
<td></td>
<td>Take S-7</td>
</tr>
<tr>
<td></td>
<td>SS S-8</td>
<td>16</td>
<td>1-1-1-1</td>
<td>Class 6</td>
<td>Wet, grey CLAY, tr. f. Sand, tr. Organics (shell fragments) (Class 6) (CH) (P.P.=0.25TSF)</td>
<td></td>
<td>Auger casing to 25' below grade</td>
</tr>
<tr>
<td></td>
<td>SS S-9</td>
<td>16</td>
<td>1-1-1-1</td>
<td>Class 6</td>
<td>Wet, grey CLAY, tr. f. Sand, tr. Organics (shell fragments) (Class 6) (CH)</td>
<td></td>
<td>Take S-8</td>
</tr>
<tr>
<td></td>
<td>SS S-10</td>
<td>16</td>
<td>1-0-1-WOH</td>
<td>Class 6</td>
<td>Wet, grey CLAY, tr. f. Sand, tr. Organics (shell fragments) (Class 6) (CH)</td>
<td></td>
<td>Take S-9</td>
</tr>
</tbody>
</table>

(Continued Next Page)
<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Sample Type</th>
<th>Recovery (mm)</th>
<th>Blow Counts</th>
<th>Log</th>
<th>Graphic Log</th>
<th>NYC Building Code</th>
<th>Depth Below Surface (m)</th>
<th>Material Description</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>SS S-11</td>
<td>12</td>
<td>1-2-2-2</td>
<td>Class 6</td>
<td>Wet, brown ORGANIC CLAY, lt. f.-m. Sand (Class 6) (OH)</td>
<td>-20.70</td>
<td>Take S-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>SS S-12</td>
<td>11</td>
<td>2-2-2-2</td>
<td>Class 6</td>
<td>Wet, brown f.-m. SAND, sm. Clay, tr. f. Gravel (Class 6) (SC)</td>
<td>-22.70</td>
<td>Take S-12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bottom of borehole at 29.0 feet.
Boring Number B-16

Client: NV5 New York
Project Name: NYCDPR - Reconstruction of Michaelis-Bayswater Park
Project Location: Queens, NY

Drilling Agency: MFS Construction, LLC
Drilling Equipment: Trailer Mounted CME-45B
Size and Type of Bit: 3-1/4" I.D. Hollow Stem Auger (HSA)
Casing: 3-1/4" I.D. HSA
Casing Hammer: Auto
Weight: 140 pounds
Sampler: 2" O.D. Split Spoon
Sampler Hammer: Auto
Weight of Drop: 30 inches
Checked By: Michael Mudalet, PE
Foreman: Danny Ninevski
Inspector: William Butler

Material Description and Remarks

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Sample Type</th>
<th>Recovery (n)</th>
<th>Blow Counts (N Value)</th>
<th>Graphic Log</th>
<th>NYC Building Code</th>
<th>Depth Below Surface (ft)</th>
<th>Material Description</th>
<th>Elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SS S-1</td>
<td>14</td>
<td>3-5-5-5 (10)</td>
<td>Class 7</td>
<td>Top 8" - Topsoil</td>
<td>3.36</td>
<td>Wet, brown f.-c. SAND, sm. Silt, tr. f. Gravel (Class 7) (FILL)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>SS S-2</td>
<td>10</td>
<td>5-5-3-2 (8)</td>
<td>Class 7</td>
<td>Top 8" - Topsoil</td>
<td>3.36</td>
<td>Wet, brown f.-c. SAND, sm. f. Gravel, lt. Silt (Class 7) (FILL)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>SS S-3</td>
<td>14</td>
<td>2-3-2-5 (5)</td>
<td>Class 7</td>
<td>Bottom 5" - Wet, brown f.-c. SAND, sm. f. Gravel, tr. Silt (Class 7) (FILL)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>SS S-4</td>
<td>6</td>
<td>2-3-2-4 (5)</td>
<td>Class 7</td>
<td>Wet, brown c.-f. SAND, sm. f. Gravel, tr. Silt (Class 7) (FILL)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>SS S-5</td>
<td>12</td>
<td>1-WOH-1-1</td>
<td>Class 6</td>
<td>Wet, grey CLAY, tr. Organics, tr. f. Sand (Class 6) (CH) (P.P. = 0.25TSF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>SS S-6</td>
<td>3</td>
<td>WOH-WOH-WOH</td>
<td>Class 6</td>
<td>Wet, grey f.-m. SAND, tr. Silt (Class 6) (SP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>SS S-7</td>
<td>14</td>
<td>1-1-1-2 (2)</td>
<td>Class 6</td>
<td>S-7A: Top 11" - Wet, grey f.-m. SAND, tr. Clay (clay lump) (Class 6) (SP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S-7B: Bottom 3" - Wet, grey CLAY, tr. f. Sand, tr. Organics (Class 6) (CH) (P.P. = 0.25TSF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>SS S-8</td>
<td>12</td>
<td>3-3-2-1 (5)</td>
<td>Class 6</td>
<td>Wet, brown f.-m. SAND, tr. Silt (Class 6) (SP)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bottom of borehole at 22.0 feet.

Remarks:
- Mobilize to hole at 11:45 AM
- Start boring at 11:55 AM
- Take S-1
- Take S-2
- Auger casing to 4' below grade
- Take S-3
- Take S-4
- Auger casing to 6' below grade
- Take S-5
- Take S-6
- Auger casing to 15' below grade
- Take S-7
- Auger casing to 20' below grade
- Take S-8
- End of boring at 1:00 PM to 22' below grade
- Backfill hole with soil cuttings
Boring Number B-17

Client: NV5 New York
MFS Project Number: 1119079
Drilling Agency: MFS Construction, LLC
Drilling Equipment: Trailer Mounted CME-45B
Size and Type of Bit: 5-7/8" TCBB, 2-1/4" I.D. HSA
Casing: 2-1/4" I.D. Hollow Stem Auger (HSA)
Casing Hammer: ----
Weight: 140 pounds
Sample Number: 2" O.D. Split Spoon
Sampler Hammer: Auto
Weight: 30 inches
Checked By: Michael Mudalen, PE

Material Description

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Sample Number</th>
<th>Recovery (%)</th>
<th>Blow Counts (N Value)</th>
<th>Graphic NYC Building Code</th>
<th>Depth Below Surface (ft)</th>
<th>Material Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SS S-1</td>
<td>10</td>
<td>6-11-8 (19)</td>
<td>Class 7</td>
<td>0.50</td>
<td>6" Concrete</td>
</tr>
<tr>
<td></td>
<td>SS S-2</td>
<td>10</td>
<td>6-8-8-7 (18)</td>
<td>Class 7</td>
<td>6.00</td>
<td>Moist, brown f.-c. SAND, sm. f.-c. Gravel, lt. Silt (Class 7) (FILL)</td>
</tr>
<tr>
<td></td>
<td>SS S-3</td>
<td>10</td>
<td>5-5-4-5 (9)</td>
<td>Class 7</td>
<td>6.00</td>
<td>Moist/wet, tan f.-m. SAND, tr. f. Gravel, tr. Silt (Class 7) (FILL)</td>
</tr>
<tr>
<td>5</td>
<td>SS S-4</td>
<td>10</td>
<td>3-4-4-3 (8)</td>
<td>Class 6</td>
<td>6.00</td>
<td>Wet, dark brown f.-c. SAND, lt. Clay, lt. f. Gravel (shell fragments, clay lumps) (Class 6) (SC)</td>
</tr>
<tr>
<td></td>
<td>SS S-5</td>
<td>2</td>
<td>2-2-2-1 (4)</td>
<td>Class 6</td>
<td>6.00</td>
<td>Wet, brown/white f.-c. SAND, lt. Silt (shell fragments) (Class 6) (SM)</td>
</tr>
<tr>
<td></td>
<td>SS S-6</td>
<td>12</td>
<td>1-1-1-1 (2)</td>
<td>Class 6</td>
<td>13.50</td>
<td>Wet, brown f.-c. SAND, lt. Silt, lt. f. Gravel (Class 6) (SM)</td>
</tr>
<tr>
<td>15</td>
<td>SS S-7</td>
<td>12</td>
<td>5-6-8-12 (14)</td>
<td>Class 3</td>
<td>13.50</td>
<td>Wet, orange-brown f.-m. SAND, lt. Silt, tr. f. Gravel (Class 3b) (SP-SM)</td>
</tr>
<tr>
<td></td>
<td>SS S-8</td>
<td>14</td>
<td>3-7-9-13 (16)</td>
<td>Class 3</td>
<td>20.00</td>
<td>Wet, orange-brown f.-m. SAND, lt. Silt, tr. f. Gravel (Class 3b) (SP-SM)</td>
</tr>
</tbody>
</table>

Remarks:
- Mobilize to hole at 7:20 AM
- Start boring at 7:35 AM
- Drill through concrete using 5-7/8-inch tri-cone button bit (TCBB)
- Take S-1
- Take S-2
- Auger casing to 4' below grade
- Take S-3
- Take S-4
- Auger casing to 8' below grade
- Take S-5
- Take S-6
- Auger casing to 15' below grade
- Take S-7
- Auger casing to 18' below grade
- Take S-8
- End of boring at 9:10 AM to 20' below grade
- Backfill hole with soil cuttings and hopleplug and patch to grade with Ace-crete concrete mix.
<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Sample Type</th>
<th>Recovery (%)</th>
<th>Blow Counts (n-value)</th>
<th>Graphic Log</th>
<th>NYC Building Code</th>
<th>Depth Below Surface (ft)</th>
<th>Material Description</th>
<th>Elevation</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SS S-1</td>
<td>8</td>
<td>3-2</td>
<td>Class 7</td>
<td></td>
<td>1.00</td>
<td>Topsoil (Class 7) (FILL)</td>
<td>8.70</td>
<td>Mobilize to hole at 7:15 AM</td>
</tr>
<tr>
<td></td>
<td>SS S-2</td>
<td>17</td>
<td>3-5-5-6 (10)</td>
<td>Class 7</td>
<td></td>
<td></td>
<td>Moist, tan f.-m. SAND, tr. Silt (Class 7) (FILL)</td>
<td></td>
<td>Start boring at 7:25 AM</td>
</tr>
<tr>
<td></td>
<td>SS S-3</td>
<td>14</td>
<td>5-4-4-5 (8)</td>
<td>Class 7</td>
<td></td>
<td></td>
<td>Moist, tan f.-m. SAND, tr. f. Gravel, tr. Silt (Class 7) (FILL)</td>
<td></td>
<td>Take S-1</td>
</tr>
<tr>
<td>5</td>
<td>SS S-4</td>
<td>19</td>
<td>4-3-4-4 (7)</td>
<td>Class 7</td>
<td></td>
<td>4.00</td>
<td>Moist, tan f.-m. SAND, tr. Silt (Class 7) (FILL)</td>
<td></td>
<td>Take S-2</td>
</tr>
<tr>
<td></td>
<td>SS S-5</td>
<td>14</td>
<td>4-2-3-9 (5)</td>
<td>Class 7</td>
<td></td>
<td>9.00</td>
<td>Wet, brown f.-c. SAND, tr. f. Gravel, tr. Silt (Class 7) (FILL)</td>
<td>0.70</td>
<td>Take S-3</td>
</tr>
</tbody>
</table>

Bottom of borehole at 9.0 feet.
<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>SAMPLE TYPE</th>
<th>NUMBER</th>
<th>RECOVERY (in)</th>
<th>BLOW COUNTS</th>
<th>GRAPHIC LOG</th>
<th>MATERIAL DESCRIPTION</th>
<th>ELEVATION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SS</td>
<td>S-1</td>
<td>11</td>
<td>3-2</td>
<td>Class 7</td>
<td>Topsoil (Class 7) (FILL)</td>
<td>1.00</td>
<td>Mobilize to hole at 10:20 AM</td>
</tr>
<tr>
<td></td>
<td>SS</td>
<td>S-2</td>
<td>16</td>
<td>5-4-4-6</td>
<td>Class 7</td>
<td>Moist, tan/brown/black f.-c. SAND, lt. f.-c. Gravel, lt. Silt (asphalt fragments) (Class 7) (FILL)</td>
<td>7.62</td>
<td>Start boring at 10:30 AM</td>
</tr>
<tr>
<td></td>
<td>SS</td>
<td>S-3</td>
<td>12</td>
<td>4-7-5-5</td>
<td>Class 7</td>
<td>Moist, tan f.-c. SAND, tr. f. Gravel, tr. Silt (Class 7) (FILL)</td>
<td>5.00</td>
<td>Take S-1</td>
</tr>
<tr>
<td>5</td>
<td>SS</td>
<td>S-4</td>
<td>14</td>
<td>3-3-2-2</td>
<td>Class 6</td>
<td>Moist/wet, tan/grey f.-m. SAND, sm. Clay, tr. f. Gravel (Class 6) (SC)</td>
<td>3.82</td>
<td>Take S-3</td>
</tr>
<tr>
<td></td>
<td>SS</td>
<td>S-5</td>
<td>20</td>
<td>4-3-3-2</td>
<td>Class 6</td>
<td>Wet, grey c.-f. SAND, sm. f. Gravel, tr. Silt (Class 6) (SP)</td>
<td>1.62</td>
<td>Take S-4</td>
</tr>
</tbody>
</table>

Bottom of borehole at 9.0 feet.
<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>SAMPLE TYPE NUMBER</th>
<th>RECOVERY (%)</th>
<th>BLOW COUNTS (N VALUE)</th>
<th>GRAPHIC LOG</th>
<th>NYC BUILDING CODE</th>
<th>DEPTH BELOW SURFACE (ft)</th>
<th>MATERIAL DESCRIPTION</th>
<th>ELEVATION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SS S-1</td>
<td>12</td>
<td>1-3</td>
<td>Class 7</td>
<td></td>
<td>0.50</td>
<td>Top 6" - Topsoil (Class 7) (FILL)</td>
<td>6.59</td>
<td>Mobilize to hole at 12:30 PM</td>
</tr>
<tr>
<td></td>
<td>SS S-2</td>
<td>10</td>
<td>4-2-4-3</td>
<td>Class 7</td>
<td></td>
<td></td>
<td>S-1: Bottom 6" - Moist, brown f.-c. SAND, lt. Silt (ceramic and asphalt fragments) (Class 7) (FILL)</td>
<td></td>
<td>Start boring at 12:35 PM</td>
</tr>
<tr>
<td></td>
<td>SS S-3</td>
<td>12</td>
<td>2-2-2-6</td>
<td>Class 7</td>
<td></td>
<td></td>
<td>Moist, orange-brown f.-m. SAND, tr. f. Gravel, tr. Silt (Class 7) (FILL)</td>
<td></td>
<td>Take S-1</td>
</tr>
<tr>
<td></td>
<td>SS S-4</td>
<td>16</td>
<td>3-3-3-4</td>
<td>Class 7</td>
<td></td>
<td></td>
<td>Wet, brown/grey f.-c. SAND, tr. f. Gravel, tr. Silt (shell fragments) (Class 7) (FILL)</td>
<td></td>
<td>Take S-2</td>
</tr>
<tr>
<td></td>
<td>SS S-5</td>
<td>24</td>
<td>1-1-1-1</td>
<td>Class 6</td>
<td></td>
<td>8.42</td>
<td>S-5A: Top 17" - Wet, brown/grey f.-m. SAND, tr. f. Gravel, tr. Silt (Class 7) (FILL)</td>
<td>-1.33</td>
<td>Take S-3</td>
</tr>
</tbody>
</table>

Bottom of borehole at 9.0 feet.
<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Sample Type Number</th>
<th>Recovery (RQD%)</th>
<th>Blow Counts (N value)</th>
<th>Graphic Log</th>
<th>NYC Building Code</th>
<th>Depth Below Surface (ft)</th>
<th>Material Description</th>
<th>Elevation</th>
<th>Remarks</th>
</tr>
</thead>
</table>
| 0 | SS S-1 | 8 | 3-6 | Class 7 | | 1.00 | Topsoil (Class 7) (FILL) | 8.58 | Start boring at 1:10 PM
 | | | | | | | Moist, black/white/orange-brown c.-f. SAND, sm. f. Gravel, tr. Silt (asphalt fragments) (Class 7) (FILL) | | Take S-1
 | | | | | | | No Recovery | | Take S-2 |
| 5 | SS S-3 | 0 | 4-5-4-3 (9) | Class 7 | | 7.00 | Moist, tan f.-c. SAND, lt. f. Gravel, tr. Silt (Class 7) (FILL) | 2.59 | Take S-3
 | | | | | | | Wet, grey CLAY, tr. Organics, tr. f. Sand (Class 7) (CH) | | Take S-4 |
| 18 | SS S-5 | 1-2-1-1 (3) | | Class 6 | | 9.00 | | 0.58 | Take S-5
 | | | | | | | Bottom of borehole at 9.0 feet | | End of boring at 1:20 PM to 9' below grade
 | | | | | | | Backfill with holeplug | | |
Boring Number GI-5

Client: NV5 New York
MFS Project Number: 1119079

Drilling Agency: MFS Construction, LLC
Drilling Equipment: Trailer Mounted CME-45B

Size and Type of Bit: ---
Casing: ---

Casing Hammer: ---
Weight: 140 pounds
Sampler: 2" D.O. Split Spoon
Sampler Hammer: Auto

Weight: 140 pounds
Drop: 30 inches

Surface Elevation: 6.91 feet +/-
Datum: NAVD88
Date Started: 11/7/19
Completed: 11/7/19
Completion Depth: 9 feet
Rock Depth: ----

No. Samples: 5
Dist.: 5
Undist.: 0
Core: 0
Ground Water Levels (ft. BG): ▼ at time of drilling 5

Material Description:
- **Depth:** 5.00
 - **Material:** Wet, brown PEAT and f. Sand (Class 6) (PT)
- **Depth:** 9.00
 - **Material:** Wet, brown PEAT and f. Sand (Class 6) (PT)

Remarks:
- Mobilize to hole at 10:30 AM
 - Start boring at 10:40 AM
 - Take S-1
 - Take S-2
- Take S-3
- Take S-4
- Take S-5
 - End of boring at 10:55 AM to 9' below grade
 - Backfill hole with holeplug

Checked by: Michael Mudeleh, PE
Foreman: Danny Ninevski
Inspector: William Butler

Bottom of borehole at 9.0 feet.
<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>SAMPLE TYPE NUMBER</th>
<th>RECOVERY (in)</th>
<th>BLOW COUNTS</th>
<th>MATERIAL DESCRIPTION</th>
<th>ELEVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SS S-1</td>
<td>8</td>
<td>2-23</td>
<td>Top 6" - Topsoil (Class 7) (FILL)</td>
<td>6.64</td>
</tr>
<tr>
<td></td>
<td>SS S-2</td>
<td>6</td>
<td>53-7-7-6</td>
<td>Bottom 2" - Concrete fragments (Class 7) (FILL)</td>
<td>5.84</td>
</tr>
<tr>
<td></td>
<td>SS S-3</td>
<td>12</td>
<td>6-5-7-10 (12)</td>
<td>Moist, brown f.-c. SAND, tr. f. Gravel, tr. Silt (Class 7) (FILL)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SS S-4</td>
<td>16</td>
<td>7-7-7-6 (14)</td>
<td>Moist/wet, brown f.-m. SAND, tr. Silt (Class 7) (FILL)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>SS S-5</td>
<td>22</td>
<td>8-5-6-7 (11)</td>
<td>S-5A: Top 20" - Wet, brown f.-m. SAND, tr. Silt (Class 7) (FILL)</td>
<td>-1.53</td>
</tr>
<tr>
<td></td>
<td>S-5B: Bottom 2" - Wet, brown PEAT (Class 8)</td>
<td>1.86</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bottom of borehole at 9.0 feet.