MACOMB’S DAM BRIDGE (originally Central Bridge) AND 155TH STREET VIADUCT, from Jerome Avenue and East 162nd Street, the Bronx, crossing the Harlem River, to West 155th Street and St. Nicholas Place, Manhattan. Built 1890-95; Alfred Pancoast Boller, consulting engineer to N.Y.C. Departments of Public Parks and Public Works; Passaic Rolling Mill Company, contractor (bridge); Union Bridge Company, contractor (viaduct); and Herbert Steward (Steward & McDermott), contractor (bridge masonry and viaduct).

Landmark Site: The Landmark Site is encompassed by a continuous line extending around the outermost edges of the Macomb’s Dam Bridge central swing span, central pivot pier island, and adjacent spans; the 155th Street Viaduct (and the roadbed of West 155th Street below the Viaduct); the Jerome Avenue approach viaduct; and all piers, abutments, stairways and railings; as far east as the eastern edge of the masonry abutment wall on the north side of the Jerome Avenue approach viaduct (just west of the intersection of Jerome Avenue and East 162nd Street), excluding the four entrance and exit ramps of the Major Deegan Expressway and two ramps of East 161st Street; as far west as the eastern curblines of the southwestern extension of the Harlem River Driveway (adjacent to Edgecombe Avenue) and St. Nicholas Place, including the paved island (Maher Circle) containing the John Hooper fountain at the southwestern end of the 155th Street Viaduct; and as far southwest as the southern edges of the masonry abutment flanking the east and west sides of the Macomb’s Place approach to the bridge. [See site map, fig. A].

On September 15, 1987, the Landmarks Preservation Commission held a public hearing on the proposed designation of the Macomb’s Dam Bridge and 155th Street Viaduct and the proposed designation of the related Landmark Site (Item No. 5). The hearing had been duly advertised in accordance with the provisions of law. Three speakers appeared at the hearing: representatives of both the N.Y.C. Department of Transportation and Modjeski & Masters, engineering consultants, took no position with regard to the designation, while a representative of the Municipal Art Society spoke in favor of the proposed designation. In addition, the Commission received letters in support of designation from Congressman Charles B. Rangel and Bronx Borough President Fernando Ferrer.
DESCRIPTION AND ANALYSIS

Summary

The Macomb's Dam Bridge (originally Central Bridge) and 155th Street Viaduct, constructed in 1890-95 to the designs of eminent structural engineer Alfred Pancoast Boller, for the N.Y.C. Departments of Public Parks and Public Works, was a considerable municipal undertaking as well as a significant feat of engineering. The Macomb's Dam Bridge is the third oldest major bridge in New York City (after the Brooklyn and Washington Bridges) and is also the city's oldest intact metal truss swing-type bridge, a bridge type most often employed in New York City along the Harlem River between the 1880s and 1910. The bridge's steel central swing span was considered at the time to be the world's heaviest moveable mass. Boller successfully overcame the various difficult challenges involved in the construction of the bridge and viaduct, particularly in the placing of the foundations, while producing an aesthetically noteworthy design. The Passaic Rolling Mill Company, of Paterson, N.J., and the Union Bridge Company, of Athens, Pa., contractors for the critically acclaimed bridge, were leading steel and iron bridge manufacturers. The long steel 155th Street Viaduct provides a gradual descent toward the bridge from the heights of Harlem to the west, while the long Jerome Avenue approach viaduct of the bridge, consisting primarily of steel deck truss spans carried by masonry piers, with a subsidiary camelback truss span, was built over what was then marshland in the Bronx. The appearance of the bridge and viaduct is enhanced by the central swing span truss outline, the steel latticework, the steel and iron ornamental details (including the Eighth Avenue stairs, sections of original railing, and several lampposts), and the masonry piers, abutments, and shelterhouses. Following in a succession of bridges at this site since 1815, the Macomb's Dam Bridge and 155th Street Viaduct continues to provide an historically important connection between upper Manhattan and the Bronx.

In 1813 Robert Macomb petitioned the New York State Legislature for permission to construct a dam across the Harlem River in the vicinity of present-day 155th Street in order to form a millpond for the use of the business he had obtained from his father. He was granted this right in 1814 with several requirements, including the provision that he operate a lock to allow vessels to pass along the river. A dam was completed in 1815 which also functioned as a toll bridge [fig. B]. Macomb's milling business later failed and the dam/bridge, consisting of stone piers connected by wooden spans, was sold. By 1838 a dispute arose over this private usurpation of the river and the courts found that "Macomb's Dam" was a "public nuisance." The Legislature in 1858 directed New York City and Westchester County to remove the dam and build a new toll-free bridge. The Central Bridge (familiarly known as Macomb's Dam Bridge) [fig. C] was constructed in 1860-61 by builders John Ross and D.L. Harris under the direction of engineer E.H. Tracey; initially authorized at $10,000, it cost over $90,000. Built of wood, it had a 210-foot central draw span with a square tower and iron rods supporting the ends, as well as two Howe truss approach spans carried on trestles. This bridge was reconstructed several times: around 1877 the square tower was replaced by A-frames; in 1883 iron trusses by the Central Bridge Works of Buffalo, N.Y., replaced the approach spans; and in 1890 the wooden draw span was rebuilt.

As early as 1826 proposals had been made to dredge a navigable channel, incorporating part of Spuyten Duyvil Creek, to connect the Harlem and Hudson Rivers. This project did not come to...
fruition, however, until the late nineteenth century; work was begun on the Harlem Ship Canal in 1888, and the Canal was opened, uncompleted, to traffic in May, 1895. In the meantime, the U.S. River and Harbor Act of 18904 required that the low bridges along the Harlem River be replaced by ones with a clearance of twenty-four feet above spring tide, to be located at right angles to the bulkhead lines of a regularized channel; it was determined that revolving swing spans would best accommodate both masted and mastless vessels. In 1890 planning commenced on a replacement for the Central Bridge. At this same time construction also began on a long viaduct at 155th Street in Manhattan which would eventually connect with the bridge [See 1892 map, fig. D].

155th Street Viaduct5

By the 1880s property owners and city officials had expressed concern about the slow rate of development of certain sections of northern Manhattan, as well as the inadequacy of bridges linking northern Manhattan with the western Bronx, recently annexed to the city; development of the area adjacent to Macomb's Dam, in particular, was considered to be impeded by a significant difference in height between the ridge (later called Coogan's Bluff)6 to the west and the river level, and by limited transportation connections to the rest of the city. This area was, however, becoming increasingly popular as a destination for day excursions out of downtown, especially for bicyclists, drivers of trotting horses, and patrons of Manhattan Field and the adjacent Polo Grounds (which opened in the early 1880s) north of the bridge. King's Handbook observed in 1892 that

Seventh Avenue, south of the river, and Jerome Avenue, its continuation north of the river, have for a generation constituted the favorite drive for New-Yorkers outside of Central Park. North of the river the avenue extends to the Jerome-Park racing-Track, and thence on to Yonkers; and it is lined with many well-known road-houses.7

For these reasons there was pressure to improve the system of roads in the vicinity of the Central Bridge.

Around 1886 a decision was reached to construct a substantial viaduct along 155th Street to connect the ridge at St. Nicholas Place with the Central Bridge (at one time there had been a wooden footbridge between the ridge and the elevated railway station at Eighth Avenue). The Legislature authorized the Commissioner of Public Works to proceed with the construction of an "elevated iron roadway, viaduct or bridge" which would provide a gradual means of descent from St. Nicholas Place to Seventh Avenue and the bridge.8 Alfred P. Boller, an eminent structural engineer, was hired as a consulting engineer to the Department of Public Works for the design and supervision of the construction of the viaduct; jurisdiction over the viaduct was placed within the department under the Chief Engineer of the Croton Aqueduct, George W. Birdsall. Martin Gay, Engineer in Charge of Harlem and Manhattan Bridges, acted in the capacity of resident (assistant) engineer. Boller's plans were officially adopted in May, 1890; the cost of the viaduct was then estimated to be $514,000, half of which was to be paid by the City, while half was to be assessed to those property owners who would benefit from the improvement. In July, 1890, Herbert Steward of Trenton, N.J., was retained as the contractor. The Union Bridge Company, of Athens, Pa., supplied the structural steel and iron for the viaduct, and the Hecla Iron Works, of Brooklyn, was subcontractor for the ornamental iron railings and stairways.9

By the end of 1891 work had been completed on the masonry west abutment of the viaduct as well as the foundations (concrete piers on piles) for nearly all of the steel columns, the depth of which varied according to the ground conditions; the foundations of the three columns nearest to the anticipated location of the pier of the proposed new bridge (near the intersection of Macomb's Dam Road) could not be safely placed until the bridge foundations were laid. The viaduct was nearly completed from St. Nicholas Place to Eighth Avenue by the end of the following year, while work on the eastern portion continued to be delayed due to the intricacies of coordinating the construction of the viaduct and bridge; a further complication arose from the viaduct and bridge meeting at an angle. In addition, a debate ensued about the adequacy of the proposed approach to the bridge and viaduct from the south at Seventh Avenue and Macomb's Dam Road (now Macomb's
a tall outcropping of rock at this location, also considered unsightly, rendered the approach hazardous. The solution was to remove the rock, redesign the approach, and create a triangular landscaped plaza at the juncture of the viaduct and bridge, which in the view of the Department of Public Works was to be "one of the most remarkable and attractive spots within the boundaries of the city." The viaduct was finally completed and officially opened on October 10, 1893, at a total cost of $739,000 [fig. E].

Central (Macomb's Dam) Bridge

Alfred P. Boller, consulting engineer to the N.Y.C. Department of Public Works for the 155th Street Viaduct, was also hired, in June of 1890, as a consulting engineer to the N.Y.C. Department of Public Parks for the design and supervision of the construction of the proposed new Central (Macomb's Dam) Bridge. In December of 1890, Boller submitted preliminary plans for a steel bridge, and detailed plans were ready in July of 1891 [figs. F and G], at which time the placement of the bridge was determined; the U.S. Secretary of War subsequently approved this placement. In November, Boller submitted his first plans for the Jerome Avenue approach to the bridge on the Bronx side, which was to be a long deck truss viaduct, necessary because of the marshland conditions there, north of Cromwell Creek. The contract for the construction of the bridge and the Jerome Avenue approach was awarded in March, 1892, to the Passaic Rolling Mill Company of Paterson, N.J., and work was begun in May. Herbert Steward (later Steward & McDermott), general contractor for the 155th Street Viaduct, acted as subcontractor for the masonry work. Upon Boller's recommendation, an arrangement was made whereby the engineers of the Department of Public Works (including assistant engineer Martin Gay), then involved with the 155th Street Viaduct, would extend their jurisdiction over the bridge as well, thus dividing their time and expenses between the two projects. According to Martin Gay, in 1892 "to accommodate travel while the new bridge was building, the old draw was picked up on scows and moved to One Hundred and fifty-sixth Street, where a pier had been prepared for it and approaches built." The construction of foundations for the bridge proved more difficult than expected due to the variation in ground conditions (foundations varied in depth from twenty-four to 100 feet below mean water level). The foundations of the masonry pivot and western piers of the swing span were established by pneumatic steel caissons while the eastern pier was built with a coffer dam. The masonry piers of the Bronx approach were to be set on contracted piling, but because of the "great depth of soft bottom at that point," two of the pier foundations between the river and the New York & Hudson River Railroad tracks were built using pneumatic caissons, while the other piers on pilings required "concreting"; this unforeseen work necessitated an amendment to the Passaic Company's contract in 1893. Apparently in connection with these changes, the number of proposed Bronx approach lattice deck truss spans was reduced; the spans as built were longer and deeper (and thus closer to the ground), and a subsidiary camelback truss span was designed to go over the railroad tracks in order to provide clearance. The need for an additional Bronx approach to the bridge was also determined, at the intersection of Sedgwick and Ogden Avenues, which would connect into the Jerome Avenue approach from the north (at the east end of the camelback span); Boller prepared plans for such an approach in January of 1893, the Legislature authorized this addition, and the contract was also awarded to the Passaic Company, at the beginning of the following year.

The bridge was constructed with the use of falsework. After the floor level was built, two lines of rails were set on the edges of the bridge in order to carry a traveling scaffold from which material was hoisted into place. In July of 1894, Valentine Cook & Son received the contract for the ornamental cast- and wrought-iron railings and lampposts for the bridge and its approaches, according to Boller's specifications. The new Central Bridge (still familiarly known as the Macomb's Dam Bridge) was finally declared completed and opened on May 1, 1895, at a total construction cost of about $1,366,500 (the total including land acquisition was $1,774,000) [figs. H and I]. Work apparently continued for some time on the approaches and their adjacent park spaces.
Alfred Pancoast Boller (1840-1912) [fig. J], one of the most distinguished American structural engineers of the late nineteenth and early twentieth centuries, achieved a considerable national and international reputation throughout his long career. Born in Philadelphia, he received a degree in civil engineering from Rensselaer Polytechnic Institute in 1861, and began his career as an engineer mainly with various railroad and bridge companies. Boller became an agent for the Phoenix Iron Company (1866-70), then vice-president and engineer for the Phillipsburg Manufacturing Company (1871-73). In 1874 he formed a consulting engineering and contracting company in New York City, specializing in bridge and railroad work, which became one of the foremost such firms in the United States and continued until Boller's death. Boller acquired a reputation for expertise in various aspects of structural engineering as well as for aesthetic accomplishment and originality in his bridge designs; noted architectural critic Montgomery Schuyler thought Boller's bridges "honorably distinguished, among those of his profession, by the evident and generally successful pains taken with respect to their appearance."²² Boller's early views were set forth in his Practical Treatise on the Construction of Iron Highway Bridges for the Use of Town Committees (1876):

Possibly to bridges more than to any other class of public works does the Ruskinian axiom (which can not be repeated too often) apply: 'Decorate the construction, but not construct decoration'. ... This matter of treating bridge constructions as architectural works, in the true sense of that term, deserves the most thoughtful consideration of engineers and committees, as bridges nearly always form prominent objects of observation in cities and towns, particularly when across large watercourses.²¹

Boller's aesthetic principles, including his intentions regarding the Macomb's Dam Bridge, were further set forth in his 1897 article on the aesthetics of bridge design in Engineering News.²²

As chief engineer, Boller was involved with numerous bridge construction projects in New York State during the 1880s including those for the West Side & Yonkers Railroad, the Yonkers Rapid Transit Commission, the Manhattan Elevated Railroad Company, the Albany & Greenbush Bridge Company, and the Staten Island Rapid Transit Railroad Company. The Thames River (New York, Providence & Boston Railroad) Bridge in New London, Conn. (1887-89), for which Boller was chief engineer, was the longest draw-span bridge and one of the most complex feats of engineering at the time. As consulting engineer to the N.Y.C. Departments of Public Parks and Public Works in the 1880s and 1890s, Boller had a particular impact upon the Harlem River through his designs for the New York & Northern (later Putnam Division, New York Central) Railroad Bridge, Eighth Avenue (1880-81, demolished); the Madison Avenue Bridge (1881-84, replaced in 1907-10); the Harlem Ship Canal Bridge (1893-95, in association with William H. Burr, moved in 1905-08 and became the University Heights Bridge, now a designated New York City Landmark); as well as the Macomb's Dam Bridge and 155th Street Viaduct (1890-95). Other bridges designed by Boller include: the Central Avenue Bridge, Morris Canal, Newark, N.J., the Duluth-West Superior Bridge, St. Croix River, Minnesota-Wisconsin (completed 1897); and the State Bridge, Connecticut River, Saybrook, Conn.

As a contractor Boller was engaged in construction for the Erie (Bergen County branch) and Pittsburgh & Lake Erie Railroads, the concrete foundation of the Statue of Liberty (1883-84, a designated New York City Landmark), and the substructure of the Arthur Kill (B.& O. Railroad) Bridge, Staten Island (1898, demolished). In 1898 Boller was joined by Henry M. Hodge to form the engineering consulting firm of Boller & Hodge; it became Boller, Hodge & Baird in 1912 with the addition of Howard C. Baird. The firm was responsible for the construction of thirty-two bridges and viaducts for Jay Gould's Wabash-Pittsburgh Terminal (later Pittsburgh & West Virginia) Railroad in 1901-04, which included two important cantilever bridges: the Wabash Bridge, Monongahela River, Pittsburgh (demolished) and the Mingo Junction Bridge, Ohio River. The firm also designed the Municipal Bridge, Mississippi River, St. Louis (1910-12), which had the longest fixed truss span in the world at the time, and acted
as consulting engineers on the steel frameworks of the Singer Building (1906-08, Ernest Flagg, demolished) and the Metropolitan Life Insurance Company Tower (1907-09, Napoleon LeBrun & Sons, 1 Madison Avenue, a designated New York City Landmark). Boller's international engineering involvements included bridge and railroad projects in Haiti, Cuba, the Philippines, and Central and South America.

The Contractors 23

The Passaic Rolling Mill Company of Paterson, N.J., contractor for the Macomb's Dam Bridge, was founded in 1867 and established mills and shops in Paterson in 1870. The company designed, manufactured, and contracted for all types of structural steel and high-grade ironwork, particularly for bridges and railroads, and became one of the largest such manufacturers of its day. Although the firm's location was farther from the sources of raw materials than that of the firms in the great steel centers of Pennsylvania, it depended for its success upon its proximity to New York City -- its mills were the ones closest to New York in which structural steel was rolled. Passaic maintained offices in New York City and Boston, and furnished the steel for the great steel-arched Washington Bridge, Harlem River (1886-89), New York City's second oldest major bridge (and today a designated New York City Landmark), and for a large portion of the elevated railroad construction in New York City. After 1903 the firm was known as the Passaic Steel Company.

The Union Bridge Company, structural metalwork contractor for the 155th Street Viaduct, was formed in 1884 through the merger of (Charles) Kellogg & (Charles S.) Maurice (organized in 1871), of Athens, Pa., and the Central Bridge Company (established in 1876) of Buffalo, N.Y.; the two firms had often worked cooperatively prior to their combination. The shop in Athens, started in 1870, became the Union Bridge Company's center of operations after the Buffalo shop was closed around 1890. The company also maintained an office in New York City. In 1885 the firm built one of the first 600-ton testing machines in the United States. Union Bridge was one of twenty-four bridge manufacturing concerns (about half the national capacity) that were acquired in 1900 by the American Bridge Company, organized by J.P. Morgan & Co.

Very little is known about Herbert Steward, general contractor for the 155th Street Viaduct and subcontractor for the masonry work of the Macomb's Dam Bridge. Although records of the N.Y.C. Department of Public Works indicate that he was from Trenton, N.J., Fitzgerald's Directory of Trenton lists an "H. Steward, contractor" only in 1890, the year the viaduct contract was awarded. Steward apparently took a partner during construction of the bridge. A plaque dated 1894, which is located on the bridge's central swing span, lists "Steward & McDermott" as contractor. 24

Hecla Iron Works of Brooklyn, responsible for the ornamental iron railings and stairways of the 155th Street Viaduct (and the above-mentioned plaque), was one of the leading architectural and ornamental iron and bronze companies in the United States. Founded in 1876 as Poulson & Eger (both principals had started out with Daniel D. Badger's Architectural Iron Works), the firm made many of the technical and aesthetic innovations that advanced the quality of American ornamental metalwork, and produced metalwork for many important buildings in New York City.

Valentine Cook (1824-1897), an iron founder, was subcontractor for the iron and bronze railings and lampposts of the Macomb's Dam Bridge and Jerome Avenue approach viaduct (of a similar design to those on the 155th Street Viaduct). Born Valentine Koch in Bavaria, he changed his name to Cook after arriving in the United States with his father in 1836. After serving an apprenticeship with founder James C. Freeman, Cook established what became a successful business. The firm of Cook & Radley operated for twenty years until 1889, at which time Cook operated the business alone; his son Martin later became a partner in the firm of C. Valentine Cook & Son.

Metal Truss Swing Bridges 25

The Macomb's Dam Bridge is a metal truss bridge, the most common type of bridge employed in the United States during the years between 1850 and 1925. This type of bridge is composed of a combination of metal trusses, each truss made up of pieces of iron or steel connected to form triangles which are joined together. The
arrangement of the members determines the specific truss type; three truss forms were particularly popular for American bridges in the nineteenth and early twentieth centuries. The Howe truss, named after Massachusetts millwright William Howe and patented in 1840, became the predominant nineteenth-century truss form for railroad bridges, first all in wood and later with iron. The Pratt truss, patented in 1844 by Boston bridge designer Thomas Pratt, later became (with a number of variations) the standard type at the end of the era of major railroad bridge construction. The Warren truss, patented in 1848 by English engineers James Warren and Theobald W. Monsani, rose in popularity in the late nineteenth century; the steel version appeared increasingly after the 1890s, and by the 1920s the Warren truss became a dominant bridge form for two decades. The Macomb's Dam Bridge employs Warren trusses and two variations of Pratt trusses.

Critiques of the Bridge and Viaduct

The Macomb's Dam Bridge and 155th Street Viaduct attracted favorable comment from the time of construction. *Scientific American* in 1890 complimented Boller's ornamental lampposts and iron railings "whose appearance certainly indicates excellent taste on the part of the designer" and later, in 1894, commented that "the two viaducts and bridge together are one of the greatest engineering operations hitherto carried out by this city." The *Real Estate Record & Guide* in 1895 remarked upon the 155th street viaduct, a beautiful piece of engineering work splendidly conceived, running in a gentle incline from the junction of several important roads on the heights at the west to the entrance of the fine bridge thrown over the river at Macomb's Dam, the old wooden affair lying below to afford a fitting illustration of the difference between the old and the new, the small necessities and modest ideas of the past with the great requirements and comprehensive provisions of the present. The bridge approaches are carried right to the junction with Sedgewick and Jerome avenues, without any shrinking in the scope of the work, and this very fact impresses one as much as anything with the capacity and fullness of the idea which dominated the undertaking.

Martin Gay, Engineer-in-Charge of Harlem and Manhattan Bridges, reminisced in 1904 that "the opportunity for architectural effect offered at this bridge was taken advantage of by Mr. Boller, as can be seen in the fine lines of the masonry and the graceful sweep of the upper chord of the draw span," while in *Architectural Record* in 1905, Montgomery Schuyler praised the bridge:

Of [the "attractive" Harlem River bridges] the Central Bridge at Seventh Avenue is the most pretentious and costly, is plainly in which the most extensive sacrifice to the Graces has been made, and it cannot be said that they have been made in vain. The architectural accessories, the shelter towers and the like are as carefully and successfully designed as the architectural essentials, the piers pierced by arches which carry the approaches, or when it is at rest, take the ends of the swinging central span, while the substructure and the superstructure alike of this central span are
so designed as to tell their story of the enormous weight detachable from its terminal supports and thrown upon the arms that reach out from the central pivot to hold it, and these in turn are distinguished in treatment from the central structure. The design is here an expression of the mechanical facts The Central Bridge ... [is a] highly creditable work ... in an artistic as well as in a scientific sense

The National Cyclopaedia of American Biography (1907) observed that Boller's "great viaduct and bridge over the Harlem river at One hundred and fifty-fifth street ... is noted not only for its architectural character, but constructively, as one of the most difficult works in engineering, both in the foundation difficulties overcome and in its unprecedented draw span" Samuel Whinery, an engineer commemorating Boller in 1922, thought that

Not a few of his bridges were characterized by their originality and boldness of design Another remarkable structure, the great viaduct (or Central Bridge) over the Harlem River at 155th Street, New York City, 4,500 ft. long, costing over $2,000,000, and having a draw-span weighing 2,400 tons, was stated at the time to be the heaviest movable mass in the world His appreciation of architectural symmetry had a marked influence on his bridge designs, his constant effort being to combine technical principles and practical utility with symmetrical and pleasing outlines.

Finally, in 1935, the Macomb's Dam Bridge was immortalized in the painting "Macomb's Dam Bridge" by eminent American artist Edward Hopper [fig. K].

Subsequent History

The name of the Central Bridge was changed officially in 1902 to the Macomb's Dam Bridge by the N.Y.C. Board of Aldermen to reflect the more common usage. In 1904 the Union Railway Company laid two sets of tracks over the viaduct and bridge for trolley service (at the east end of the camelback span the tracks veered northward); horse traffic lessened on the bridge with the arrival of trolleys and automobiles, and was diverted to the Harlem River Speedway which had opened in 1898 for recreational driving of horses (the Speedway, the south end of which adjoined the west end of the 155th Street Viaduct, was later converted to the Harlem River Drive). Also around 1904 the bridge was electrified: the steam engine which originally turned the central swing span and operated the hydraulic ram that lifted the ends was replaced by an electric 24-horsepower motor, and the gas lighting was also replaced by electric. From the turn of the century into the 1910s, the marshland on the Bronx side was filled in for the creation of Macomb's Dam Park. The south side of the Jerome Avenue approach received two new ramp connections at East 161st Street in 1920 (near Yankee Stadium, then under construction), which also entailed the dismantling of the south face of the masonry abutment and stairway and their re-installation on the north side (at the west side of 161st Street). A new Seventh Avenue approach from the south, which merged into Macomb's Place (formerly Macomb's Dam Road), was constructed in 1929-30 and resulted in a reconfigured triangular park. In connection with this work, all to the designs of architect Andrew J. Thomas, parts of the two westernmost spans of the Macomb's Place approach to the bridge, originally built at a straight angle, were rebuilt and reconfigured in a flared polygonal outline (including the rebuilding of the two lattice trusses along the south face and some columns); the Macomb's Place masonry abutment was extended southward at an angle (to support the reconfigured road deck), re-using the masonry taken from the (then) dismantling of an original stairway at this location. (In 1960 this abutment extension was removed and a new abutment extension was built, this time in a straight line with the original; the original stairway masonry was apparently once more recycled. The westernmost approach span and lattice truss was also again partially rebuilt.)

In 1949-51 the New York State Department of Public Works, as part of its construction of what became the Major Deegan Expressway, altered the Bronx approaches to the bridge; this work included the removal of the entire Ogden-Sedgwick Avenues approach, the removal of two sets of masonry piers and three steel deck truss spans of the Jerome Avenue approach viaduct over the new highway.
(these were replaced by new steel deck spans set on concrete "bents" faced with granite), and the installation of four new highway exit and entrance ramps. The trolley tracks were also removed at this time. Rehabilitations of the road decks of the bridge and viaduct around 1960 to 1964 resulted in the replacement of the original railings and loss of most of the original railings and lamp posts.

Description: Macomb's Dam Bridge and 155th Street Viaduct. [See figs. L to V]

Macomb's Dam Bridge

The Macomb's Dam Bridge is composed of: A) the 415-foot steel nineteen-panel Pratt through-truss central swing span over the Harlem River; B) the approximately 140-foot steel (with masonry abutment) V-shaped double approach on the Manhattan side (over the Harlem River Drive), which connects the bridge to the 155th Street Viaduct and Macomb's Place (formerly Macomb's Dam Road); and C) the approximately 1800-foot long Jerome Avenue approach viaduct on the Bronx side which consists mostly of steel double-intersection Warren fixed deck truss spans carried by masonry piers, but has, additionally, a 221-foot subsidiary steel nine-panel camelback through-truss span over the railroad tracks, replacement steel spans set on concrete bents (dating from 1949-51) over the Major Deegan Expressway, and an end masonry abutment.

A) The central swing span, roughly sixty-five feet in width, has a square central tower with ornamental finials which is flanked by trusses having top chords with concave profiles; it is built up of a variety of steel structural members, such as riveted latticework and eye-bars, and is braced laterally and diagonally. Boller relieved the angularity of the latticework by using such elements as steel disks at the intersections of members. The ends of this span form decorative "portals." The curved brackets of the lateral truss bracing above the roadway were originally open latticework, but are now solid. The Manhattan end carries a plaque which bears the date 1894 and name "Central Bridge" (as well as the names of the engineer, contractors, and city officials), surmounted by the New York City coat of arms (executed by the Hecla Iron Works) [fig. W]. Other surviving decorative elements include three projecting wrought-iron signs and two wrought-iron lamp brackets (a 1901 design). The swing span is supported by the large round central pivot pier, which has a double drum and coned rollers, located on an oblong island with wooden fenders. The wide end piers, battered and roughly H-shaped, are built of dark rock-faced granite with cut light granite copings and trim, are pierced by semi-circular arches below the bridge deck, and terminate on either side of the span with stone shelterhouses (gate tender's houses) that have red (originally tile, now shingle) roofs and (altered) finials. Pairs of latticework gates (replacements) are set at both ends of the span. The cantilevered sidewalks have steel replacement fascias and railings (c. 1963) at the outer edge, as well as chainlink fencing; the original swing span fascia had a molded cornice, and the original ornamental railings were of bronze and cast and wrought iron.

B) The V-shaped double approach on the Manhattan side, formed by the juncture of the 155th Street Viaduct on the north and Macomb's Place/Seventh Avenue on the south, is composed mainly of steel plate girders except for three steel double-intersection Warren truss spans on the south face of the approach, set along a polygonal outline (originally set at a straight angle, but altered in 1929-30 and 1960), carried by box-girder columns with flared latticework brackets (the columns on the edges have two brackets, while the interior ones have four, some of these are altered). The replacement cantilevered sidewalks and railings (added c. 1963), as well as the chainlink fencing, are similar to those on the swing span; the original fascias had two roll moldings and rosettes. The abutment pier (extended and altered in 1929-30 and 1960, apparently of recycled original masonry), supports the roadway of Macomb's Place, has a wingwall on the west side of Macomb's Place, is built of rock-faced limestone and granite, and terminates at the approach sidewalk level in cut granite posts (that on the east side dates from c. 1960). A stairway (originally one of two), adjacent to the wingwall and leading from the approach to 155th Street below, has about half of its original decorative cast- and wrought-iron railing by Valentine Cook (including a section at the top landing).

C) The long Jerome Avenue approach viaduct on the Bronx side, approximately sixty feet wide, is composed, from west to east, of: two steel double-intersection Warren deck truss spans, the steel camelback through-truss span, six steel-and-concrete spans (1949-51) which replaced three
original truss spans (and two pairs of masonry piers), and six more double-intersection Warren deck truss spans set on a curve to the northeast. The original spans are carried on pairs of battered rectangular dark rock-faced granite piers with cut light granite copings. The replacement spans are carried on pierced concrete "bents" faced with granite. The camelback truss span is built of structural members similar to the central swing span; the curved brackets above the roadway (originally latticework) have also been replaced by solid ones. The original railings and fascias (similar to the Manhattan approach) have been replaced on the viaduct (c. 1963) and chainlink fencing installed. The approach is terminated at the eastern end by a limestone and granite abutment on the north side. East 161st Street is flanked by granite piers and stairways (with replacement railings); the pier and stairs on the west side were originally on the south side of the approach, but were dismantled and re-installed when the ramps at 161st Street were built in 1920. [The four entrance and exit ramps of the Major Deegan Expressway (1949-51) and two East 161st Street ramps (1920) are excluded from this designation.]

155th Street Viaduct

The 155th Street Viaduct, approximately 1600 feet long and sixty-one feet wide, consists of a fixed deck steel-girder superstructure carried on two parallel rows of steel box-girder type columns (varying in height from about twenty to sixty feet) with two riveted lattice-braced sides (the interior sides have been covered with plates). The columns of the westernmost twenty-two spans of the viaduct are braced, every alternate span, by horizontal, lateral, and diagonal latticework with curved latticework brackets, while the columns of the easternmost nine spans are unbraced; a deck truss spans Eighth Avenue. The concrete road deck and cantilevered sidewalks are replacements (c. 1960); the sidewalks were originally supported by curved latticework brackets and the original fascias were similar to those on the approaches of the bridge. Two long flights of stairs (originally there were four -- the eastern pair was removed between 1938 and 1960), which once connected the viaduct with the stations of the elevated railway and New York & Northern Railroad and lower 155th Street, are located at the west side of Eighth Avenue;²⁷ roofs (of wood and corrugated metal) cover the stairs on the upper portions, which terminate in cantilevered pavilions (with hipped roofs) at the top and midway, while the lower stairs are open. A walkway below the viaduct connects the two lower pavilions (both have wood plank flooring). The original ornamental iron railings (with an Art Nouveau design different than the other bridge and viaduct railings) by Hecla Iron Works survive on these stairways, pavilions, and connecting walkway, as do the slender colonnettes supporting the roofs and railings, and riveted fleurs-de-lis on the fascias. The west end of the viaduct is supported by a large rock-faced granite and limestone abutment pier, which is terminated at the viaduct sidewalk level by cut limestone posts and has a wingwall on the north side. Two panels of original cast- and wrought-iron railing by Hecla Iron Works survive on the south side of the viaduct, west of the termination post; a long section of original railing (as well as one original cast-iron gas lamp base and post) survives on the north side of the viaduct, west of the termination post. A long stairway adjacent to the abutment wingwall connects the viaduct with lower 155th Street; the stairway has cut granite steps, the majority of its original railing, and three original gas lamp bases (and two posts). The roadbed of lower 155th Street, from the abutment pier to Bradhurst Avenue, is paved with exposed Belgian block.

At the southwest end of the 155th Street Viaduct is a paved island known as Maher Circle [included in this designation] which contains the John Hooper fountain installed in 1894 [fig. X]. This granite fountain, designed to provide drinking water for humans, horses, dogs, and cats, now consists of the large round horse trough, carved pedestal drinking fountain, and a base (that originally held an Ionic column with a glass globe and weathervane), flanked by two small basins.³⁸

Report prepared by Jay Shockley
Deputy Director of Research

Report edited by Elisa Urbanelli
Research Department Editor
Acknowledgement: The Commission wishes to thank Nancy Kauhl, engineer with the firm of Modjeski & Masters, consultants, whose work with and knowledge of the N.Y.C. Department of Transportation's original and alteration drawings of the bridge has been of great assistance.

2. The spelling of this name is also frequently seen as "McComb."

3. The 1860 Central Bridge cornerstone, having inscriptions, survives on the Macomb's Dam Bridge pivot pier island.

4. 51st Congress, Session I, Chapter 907 (Sept. 19, 1890).

5. This section was compiled from the following sources: "The Central Bridge and St. Nicholas Viaduct," Real Estate Record & Guide (Nov. 5, 1892), 572-573; "The Harlem River Bridge at 155th Street, New York," Engineering News 27 (May 26, 1892), 526-527; Moses King, King's Handbook of New York (Boston: Matthews-Northrup Co., 1892), 176-177; "The Macomb's Dam Bridge Improvement," Real Estate Record & Guide (Apr. 23, 1892), 641-644; New York City Dept. of Public Works, [Quarterly] Reports (Dec., 1889 to Dec., 1895); NYC Dept. of Transportation, Macomb's Dam Bridge Drawings (1880s-1960s), and "The 155th Street Viaduct, New York City, New York," Scientific American 62 (June 21, 1890), 385, 394. [Note: very few original drawings of the viaduct have been located to date.]

6. Part of the ridge is occupied by Colonial Park to the south of the viaduct and Highbridge Park to the north.

7. King, 176.

11. This section was compiled from the following sources: "The Central Bridge and St. Nicholas Viaduct," 572-573; "The Harlem River Bridge at 155th Street," 526-527; King, 176-177; "The Macomb's Dam Bridge Improvement," 641-644; Modjeski & Masters, "Macomb's Dam Bridge Chronological Inventory of Existing Drawings" and appendix; "A New Harlem River Bridge," Scientific American 65 (Sept. 5, 1891), 150; NYC Dept. of Transportation; "The Seventh Avenue Bridge over the Harlem River, New York City," Scientific American 70 (June 2, 1894), 340; NYC Dept. of Public Parks, Minutes & Documents (Mar., 1899 to Apr., 1899); and "The South Approach to Macomb's Dam Bridge," Real Estate Record & Guide (Mar. 26, 1892), 467-468.

12. This was the agency authorized by the Legislature to build the bridge under the NY State Laws of 1871, Chapter 534; the Laws of 1882, Chapter 410, Section 676; the Laws of 1890, Chapter 207; and the Laws of 1892, Chapter 13.
13. Gay, 73. This procedure was also described in "Moving the Draw Span of the Macomb's Dam Bridge," *Engineering News*, 28 (Aug. 18, 1892), 151-152. The firm of T. & A. Walsh was the contractor for this "temporary" bridge in July-August of 1892. The west pier of the old Central Bridge was removed at this time; the stone pivot pier was not removed until the end of 1895. The Secretary of War finally ordered the removal of the old bridge at its "temporary" location in April, 1897, almost two years after the completion of the new Macomb's Dam Bridge; it was presumably demolished soon after.

14. Sooysmith & Company was subcontractor for pneumatic caissons. The construction of these foundations is described in: W. Gustav Triest, "The Substructure of the Seventh Avenue Swingbridge, New York City," *Engineering News* 30 (Sept. 7, 1893), 198-200.

16. A drawing of the bridge published in "The Macomb's Dam Bridge Improvement" (Apr. 23, 1892) shows a continuous deck truss viaduct on the Bronx approach, the easternmost spans having steel columns rather than masonry piers. Further corroborations for the amended design is given by the fact that the bridge contract numbers of the Passaic Company are sequential in 1892-93 (Nos. 485-488), while the contract for the camelback span is No. 720 in 1894, and by surviving drawings of the proposed and as-built approach spans.

17. New York State Laws of 1893, Chapter 319.

18. NYC Dept. of Public Parks, *Minutes and Documents* (Apr., 1895), 120.

24. "The Harlem River Bridge at 155th St., New York," 526, and Triest, 200. While the former (May, 1892) mentioned only Steward, the latter (Sept., 1893) included both names.
25. This section was adapted from: LPC, *University Heights Bridge Designation Report* (LP-1455) (New York: City of New York, 1984), report prepared by Jay Shockley.

27. "The Seventh Avenue Bridge ...," 340.

32. Whinery, 1655.

33. This painting is in the collection of the Brooklyn Museum.

34. This section was compiled from the following sources: Gay, 73; Modjeski & Masters; NYC Dept. of Bridges, *Annual Reports* (1898 to 1915); NYC Dept. of Plant and Structures, *[Annual] Reports* (1916 to 1936); NYC Dept. of Public Works, *Annual Reports* (1938 to 1964); NYC Dept. of Transportation; and President of the Borough of Manhattan, *[Annual] Reports* (1902-1920).

 In 1921, for the very first time, the Macomb's Dam Bridge and the 155th Street Viaduct were placed under the jurisdiction of the same N.Y.C. department. The bridge, built by the Dept. of Public Parks, was placed under the Dept. of Bridges in 1898, the Dept. of Plant and Structures in 1916, the Dept. of Public Works in 1938, the Transportation Administration in 1966, and the Dept. of Transportation in 1977. The viaduct, built by the Dept. of Public Works, was placed under the jurisdiction of the Manhattan Borough President in 1898, until its transfer to the Dept. of Plant and Structures in 1921.

35. This motor in turn was replaced by one of 52 horsepower in 1917.

36. The other stairway was on the east side of Macomb's Place; it was removed during the work on the Seventh Avenue approach in 1929-30.

37. The viaduct originally had platforms supported by deck trusses and columns on each side of the viaduct at Eighth Avenue, forming a cross-shaped "plaza." The south side had a waiting pavilion, which was removed c. 1927. These platforms were removed c. 1960. *Engineering News* considered the stairways "of somewhat novel design" in "The Harlem River Bridge at 155th Street, New York," 526.

38. Information on the fountain was supplied by the office of the historian, NYC Dept. of Parks and Recreation. The column was toppled in 1981 and remains (damaged) in storage. John Hooper (c. 1812-1889), a New York City businessman and philanthropist, started as a civil engineer, worked at the *Tribune*, and later founded what was thought to be the city's first advertising agency. In his will he left $5000 for a Manhattan fountain "whereat man and beast may drink," as well as a similar bequest for Brooklyn. John Hooper obituary and "John Hooper's Bequests," *NYT* (Dec. 23, 1889), p. 2, and (Jan 1., 1890), p. 2.

13
FINDINGS AND DESIGNATION

On the basis of a careful consideration of the history, the engineering, the architecture, and other features of this structure, the Landmarks Preservation Commission finds that the Macomb's Dam Bridge (originally Central Bridge) and 155th Street Viaduct has a special character, special historical and aesthetic interest and value as part of the development, heritage and cultural characteristics of New York City.

The Commission further finds that, among its important qualities, the Macomb's Dam Bridge (originally Central Bridge) and 155th Street Viaduct, constructed in 1890-95, is a considerable feat of late nineteenth-century engineering with its massive steel central swing span over the Harlem River, its long Jerome Avenue deck truss approach viaduct which was constructed over what was then marshland in the Bronx, and the 155th Street Viaduct which provided a descent from the heights of Harlem; that the Macomb's Dam Bridge is the third oldest major bridge in New York City and, in particular, is the city's oldest intact metal truss swing-type bridge, a bridge type that was popular in the United States in the late nineteenth century and was employed in New York City primarily along the Harlem River between the 1880s and 1910; that the designer of the bridge and viaduct, Alfred Pancoast Boller, consulting engineer to the N.Y.C. Departments of Public Parks and Public Works, was one of the most distinguished American structural engineers of the late nineteenth and early twentieth centuries who also achieved a reputation for aesthetic accomplishment and originality in his designs; that Boller overcame the difficult challenges presented in the construction, particularly of the foundations, and successfully designed, in the central swing span, what was credited at the time as the world's heaviest moveable mass; that the distinctive and aesthetically noteworthy design of the bridge is enhanced by its central swing span truss outline, steel latticework and steel and iron ornamental details, commemorative plaque, subsidiary camelback truss span, and masonry piers, abutments, and shelterhouses; that the design of the viaduct is enhanced by its steelwork and surviving ornamental ironwork (including sections of original railing, several lampposts, and, particularly, the two long flights of stairs at Eighth Avenue); that the contractors for the structural metalwork of the critically acclaimed bridge and viaduct, the Passaic Rolling Mill Company of Paterson, N.J., and the Union Bridge Company of Athens, Pa., were leading firms of the day in the design and manufacture of steel and iron bridges; and that there has been a bridge at this site, providing an important connection between Manhattan and the Bronx, since 1815.

Accordingly, pursuant to the provisions of Chapter 74, Section 3020 of the Charter of the City of New York and Chapter 3 of Title 25 of the Administrative Code of the City of New York, the Landmarks Preservation Commission designates as a Landmark the Macomb's Dam Bridge (originally Central Bridge) and 155th Street Viaduct, from Jerome Avenue and East 162nd Street, Borough of the Bronx, crossing the Harlem River, to West 155th Street and St. Nicholas Place, Borough of Manhattan, and designates the following as its Landmark Site: the site encompassed by a continuous line extending around the outermost edges of the Macomb's Dam Bridge central swing span, central pivot pier island, and adjacent spans; the 155th Street Viaduct (and the roadbed of West 155th Street below the Viaduct); the Jerome Avenue approach viaduct; and all piers, abutments, stairways and railings; as far east as the eastern edge of the masonry abutment wall on the north side of the Jerome Avenue approach viaduct (just west of the intersection of Jerome Avenue and East 162nd Street), excluding the four entrance and exit ramps of the Major Deegan Expressway and two ramps of East 161st Street; as far west as the eastern curblines of the southwestern extension of the Harlem River Driveway (adjacent to Edgecombe Avenue) and St. Nicholas Place, including the paved island (Maher Circle) containing the John Hooper fountain at the southwestern end of the 155th Street Viaduct; and as far southwest as the southern edges of the masonry abutment flanking the east and west sides of the Macomb's Place approach to the bridge.
<table>
<thead>
<tr>
<th>KEY</th>
<th>Description</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Edgecombe Avenue</td>
<td>Manhattan</td>
</tr>
<tr>
<td>2.</td>
<td>Harlem River Driveway</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>St. Nicholas Place</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Maher Circle</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Bradhurst Avenue</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>8th Avenue</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Harlem River Drive</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Macomb's Place</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Ramp</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>East 162nd St.</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Jerome Avenue</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>East 162nd St.</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>7th Avenue Railroad</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: This drawing is not to scale.
fig. B: *Bass Fishing at Macomb’s Dam* (Currier & Ives, 1852)

Source: Reier (Museum of the City of NY)

fig. C: *Central Bridge* (1860-61)

Source: Gay
fig. D: Vicinity of Macomb’s Dam Bridge (1892)

Source: RER&G (Apr. 23, 1892)
fig. E: 155th Street Viaduct (1921)
Source: NYC, Dept. of Plant & Structures

fig. F: Macomb's Dam Bridge, central swing span end pier
Source: Engineering News (Sept. 7, 1893)
fig. G: Macomb's Dam Bridge (Alfred P. Boller, 1892)
Source: NYC, Dept. of Transportation
fig. H: Macomb's Dam Bridge
Source: Reier (Bronx Co. Historical Society)

fig. I: Macomb's Dam Bridge (c. 1905)
Source: New-York Historical Society
fig. J: Alfred Pancoast Boller
Source: NYS’s Prominent & Progressive Men

fig. K: Macomb’s Dam Bridge (Edward Hopper, 1935)
Source: Reier (Brooklyn Museum)
fig. L: Macomb's Dam Bridge and 155th Street Viaduct, aerial view

Source: Modjeski & Masters
fig. M: Macomb's Dam Bridge, central swing span
Credit: Shockley, LPC

fig. N: Macomb's Dam Bridge, central swing span
Credit: Shockley, LPC
fig. O: Macomb's Dam Bridge, electric light bracket (1901)
Credit: Shockley, LPC/NYC, DOT

fig. P: Macomb's Dam Bridge, Manhattan approach
Credit: Shockley, LPC
fig. Q: Macomb’s Dam Bridge, Jerome Avenue approach
camelback truss

Credit: Shockley, LPC

fig. R: Macomb’s Dam Bridge, Jerome Avenue approach
deck truss span

Credit: Shockley, LPC
fig. S: 155th Street Viaduct
Credit: Shockley, LPC

fig. T: 155th Street Viaduct, western abutment pier
Credit: Shockley, LPC
fig. U: 155th Street Viaduct, original railing, west end
Credit: Shockley, LPC

fig. V: 155th Street Viaduct, Eighth Avenue iron stairway
Credit: Shockley, LPC
fig. W: Macomb's Dam Bridge, Plaque and Coat of Arms

Credit: Shockley, LPC
A History of Real Estate,... (1898)

fig. X: Hooper Fountain (1894, George M. Huss)

Credit: Shockley, LPC
historic view (c. 1914), LPC